ASYMPTOTIC EXPANSION FOR THE SUM OF INVERSES OF ARITHMETICAL FUNCTIONS INVOLVING ITERATED LOGARITHMS

Hacène Belbachir, Djamel Berkane

A generalized formula is obtained for the sum of inverses of the prime counting function for a large class of arithmetical functions related to the iterated logarithms.

1. INTRODUCTION AND MAIN RESULT

Let \(\pi(x) \) be the number of primes not exceeding \(x \). In 2000, using the asymptotic formula

\[
\pi(x) = \frac{x}{\log(x)} \left(\sum_{k=0}^{m-1} \frac{k!}{\log^k(x)} + O\left(\frac{1}{\log^m(x)} \right) \right),
\]

L. Panaitopol [4] obtained

\[
\frac{1}{\pi(x)} = \frac{1}{x} \left(\log(x) - 1 \frac{k_1}{\log(x)} - \cdots - \frac{k_m}{\log^m(x)} + O\left(\frac{1}{\log^{m+1}(x)} \right) \right),
\]

where \(m \geq 1 \) and \(\{k_j\}_j \) is the sequence of integers given by the recurrence relation

\[k_n + 1!k_{n-1} + 2!k_{n-2} + \cdots + (n-1)!k_1 = n \cdot n! \,.
\]
Asymptotic expansion for the sum of inverses of an arithmetical function...

Two years later, A. Ivic [3] proved that

$$\sum_{2 \leq n \leq x} \frac{1}{\pi(n)} = \frac{1}{2} \log^2(x) - \log(x) - \log \log(x) + C$$

$$+ \frac{k_2}{\log(x)} + \cdots + \frac{k_m}{(m-1) \log^{m-1}(x)} + O\left(\frac{1}{\log^m(x)}\right),$$

where C is an absolute constant not depending on m.

In 2009, the first author and F. Bencherif [1] derived an asymptotic formula for the sum of reciprocals of a large class of arithmetic functions having the following expansion

$$f(n) = \frac{n}{\log(n)} \left(a_0 + \frac{a_1}{\log(n)} + \cdots + \frac{a_{m-1}}{\log^{m-1}(n)} + O\left(\frac{1}{\log^m(n)}\right) \right),$$

with $a_0 \neq 0$, they obtained

$$\sum_{2 \leq n \leq x} \frac{1}{f(n)} = \frac{b_0}{2} \log^2(x) + b_1 \log(x) + b_2 \log \log(x) + C_0$$

$$- \frac{b_3}{\log(x)} - \cdots - \frac{b_{m+1}}{(m-1) \log^{m-1}(x)} + O\left(\frac{1}{\log^m(x)}\right),$$

where $\sum_{2 \leq n \leq x} \frac{1}{f(n)}$ is a sum restricted to integers n for which $f(n) \neq 0$ and $b_j = A_j(a_0, a_1, \ldots, a_j)$ for $0 \leq j \leq m + 1$, with

$$A_0(t_0) = \frac{1}{t_0}, \quad A_1(t_0, t_1) = -\frac{t_1}{t_0^2},$$

$$A_n(t_0, t_1, \ldots, t_n) = \frac{(-1)^n}{t_0^{n+1}},$$

where

$$A_n(t_0, t_1, \ldots, t_n) = \frac{(-1)^n}{t_0^{n+1}}.$$

More recently, the authors in [2] studied the arithmetical function $nK(n)$, where

$$K(x) := \max \{ k \in \mathbb{N} / p_1 p_2 \cdots p_k \leq x \},$$

and p_k is the k^{th} prime number. Using the asymptotic expansion

$$K(x) = \frac{\log(x)}{\log \log(x)} \left(\sum_{j=0}^{m} \frac{j!}{[\log \log(x)]^j} + O\left(\frac{1}{[\log \log(x)]^{m+1}}\right) \right),$$
they get a similar result to the one in A. Ivč [3], with three levels of logarithmic iterations \(x, \log x, \log \log x, \)

\[
\sum_{2 \leq n \leq x} \frac{1}{nK(n)} = \frac{1}{2} \log^2 \log(x) - \log \log(x) - \log \log \log(x) + C_1
\]

\[+ \frac{k_2}{\log \log(x)} + \cdots + \frac{k_m}{(m-1) \log^{m-1} \log(x)} + O \left(\frac{1}{\log^m \log(x)} \right), \]

where \(C_1 \) is an absolute constant not depending on \(m \).

Let \(s \geq 0 \) be an integer. We define the function

\[
L_s(x) := \prod_{i=0}^{s} \log_i(x), \quad \text{with} \quad \log_i(x) = \underbrace{\log \cdots \log}_{i \text{ times}}(x) \text{ and } \log_0(x) = x.
\]

For \(s = 2 \), \(L_2(x) = x \log(x) \log \log(x) \).

Let \(f_s \) be an arithmetical function admitting, for all \(m \geq 1 \), the following asymptotic formula

\[
f_s(n) = \frac{L_s(n)}{\log_{s+1}(n)} \left\{ \sum_{i=0}^{m-1} \frac{a_i}{\log_{s+1}^i(n)} + O \left(\frac{1}{\log_{s+1}^m(n)} \right) \right\}, \quad a_0 \neq 0.
\]

For \(s = 0 \) and \(a_i = i! \), we obtain (1), which corresponds to \(\pi(n) \). For \(s = 1 \) with \(a_i = i! \), we find (2), which corresponds to \(nK(n) \).

Considering the above background, here is our main result:

Theorem 1. For all integers \(m \geq 1 \) and \(s \geq 0 \), we have

\[
\sum_{n \leq x} \frac{1}{f_s(n)} = \frac{\delta_0}{2} \log_{s+1}^2(x) + \delta_1 \log_{s+1}(x) + \delta_2 \log_{s+2}(x) + C_s
\]

\[- \frac{\delta_3}{\log_{s+1}(x)} - \cdots - \frac{\delta_{m+1}}{(m-1) \log_{s+1}^{m-1}(x)} + O \left(\frac{1}{\log_{s+1}^m(x)} \right),
\]

where \(\sum_{n \leq x} \frac{1}{f_s(n)} \) is a sum restricted to integers \(e(s) < n \leq x \) for which \(f_s(n) \neq 0 \), \(C_s \) is an absolute constant not depending on \(m \), \(\{\delta_i\} \) is the sequence given by the recurrence relation

\[a_0 \delta_n + a_1 \delta_{n-1} + \cdots + a_{m} \delta_0 = 0, \quad a_0 \delta_0 = 1,
\]

and \(e(s) := \exp \exp \cdots \exp (0) \).

For \(a_i = i! \) and \(s = 0 \) and \(s = 1 \), respectively we find the results of A. Ivč [3] and H. Belbachir and D. Berkane [2].
2. LEMMAS AND PROOF OF THE MAIN RESULT

Let \(\{ \delta_i \} \) be the sequence of real numbers defined by expanding the following expression of the rational function \(\Delta \), for \(y > 0 \) we consider

\[
\Delta(y) := \left(\sum_{i=0}^{m} \frac{a_i}{y^{i+1}} \right) \left(\sum_{i=0}^{m+1} \frac{\delta_i}{y^{i-1}} \right), \quad m \geq 1,
\]

such that \(a_0 \delta_0 = 1 \), and terms with \(\frac{1}{y^i}, 1 \leq i \leq m \) vanish.

Then, when \(y \to \infty \), we obtain

\[
(4) \quad \Delta = 1 + O\left(\frac{1}{y^{m+1}} \right).
\]

Lemma 1. The coefficient \(\delta_n, n \geq 1 \), is given by the relation

\[
\delta_n = \frac{1}{a_{n+1}^{m+1}} \begin{vmatrix}
0 & a_1 & \ldots & a_{n-1} & a_n \\
0 & a_0 & \ldots & a_{n-2} & a_{n-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & a_0 & a_1 \\
1 & 0 & \ldots & 0 & a_0
\end{vmatrix}
\]

Proof. From the definition of \(\Delta(y) \), we notice that the vector \(\delta = (\delta_0, ..., \delta_n) \), is the unique solution to the following Cramer’s system

\[
\begin{align*}
a_0 \delta_n + a_1 \delta_{n-1} + \cdots + a_n \delta_0 &= 0 \\
a_0 \delta_{n-1} + \cdots + a_{n-1} \delta_0 &= 0 \\
\vdots \quad & \quad \vdots \\
a_0 \delta_1 + a_1 \delta_0 &= 0 \\
a_0 \delta_0 &= 1.
\end{align*}
\]

Lemma 2. For \(n \) sufficiently large, we have

\[
f_s(n) = \frac{L_s(n)}{\delta_0 \log_{s+1}(n) + \delta_1 + \varepsilon(n)},
\]

where \(\lim_{n \to \infty} \varepsilon(n) = 0 \).

Proof. From (3), we have

\[
(5) \quad f_s(n) = L_s(n) \left(\sum_{j=0}^{m} \frac{a_j}{\log_{j+1}^s(n)} \right) + O\left(\frac{L_s(n)}{\log_{s+1}^m(n)} \right),
\]

and from (4) it follows

\[
(6) \quad \sum_{j=0}^{m} \frac{a_j}{y^{j+1}} = \frac{1 + O\left(\frac{1}{y^{m+1}} \right)}{\delta_0 y + \sum_{i=1}^{m+1} \frac{\delta_i}{y^{i-1}}} = \frac{1}{\delta_0 y + \sum_{i=1}^{m+1} \frac{\delta_i}{y^{i-1}}} + O\left(\frac{1}{y^{m+2}} \right).
\]
The substitution of $y = \log_{s+1}(n)$ in (6) and in relation (5) gives

$$f_s(n) = \frac{L_s(n)}{\delta_0 \log_{s+1}(n) + \delta_1 + \frac{\delta_2}{\log_{s+1}(n)} + \frac{\delta_3}{\log^2_{s+1}(n)} + \cdots + \frac{\delta_{m+1}}{\log^m_{s+1}(n)}} + O\left(\frac{L_s(n)}{\log^m_{s+1}(n)}\right).$$

Thus we can write

$$f_s(n) = \frac{L_s(n)}{\delta_0 \log_{s+1}(n) + \delta_1 + \varepsilon(n)},$$

with $\varepsilon(n) = O\left(\frac{1}{\log_{s+1}(n)}\right)$ from which it follows that $\lim_{n \to \infty} \varepsilon(n) = 0$.

The case $s = 0$ and $a_i = i!$, gives the approximation given by L. Panaitopol [4],

$$\pi(n) = \frac{n}{\log(n) - 1 - \varepsilon(n)}.$$ \(\square\)

Proof of the main result. Simplifying formula (7), we can write for all $m \geq 1$,

$$f_s(n) = \frac{L_s(n)}{\delta_0 \log_{s+1}(n) + \delta_1 + \frac{\delta_2}{\log_{s+1}(n)} + \frac{\delta_3}{\log^2_{s+1}(n)} + \cdots + \frac{\delta_{m+1}(1 + \varepsilon_m(n))}{\log^m_{s+1}(n)}},$$

with

$$\varepsilon_m(n) \ll_m \frac{1}{\log_{s+1}(n)}.$$

Then, for all $m \geq 1$ and all $n > \epsilon(s)$, we obtain

$$\frac{1}{f_s(n)} = \frac{1}{L_s(n)} \left(\frac{\delta_0 \log_{s+1}(n) + \delta_1 + \frac{\delta_2}{\log_{s+1}(n)}}{\log_{s+1}(n)} + \frac{\delta_3}{\log^2_{s+1}(n)} + \cdots + \frac{\delta_{m+1}(1 + \varepsilon_m(n))}{\log^m_{s+1}(n)}\right),$$

and by summation, we obtain

$$\sum_{n \leq x} \frac{1}{f_s(n)} = A_1 + A_2 + A_3 + \sum_{r=2}^{m} B_r + \sum_{\epsilon(s) < n \leq x} \frac{\delta_{m+1}\varepsilon_m(n)}{L_s(n) \log^m_{s+1}(n)},$$

with

$$A_1 = \sum_{\epsilon(s) < n \leq x} \frac{\delta_0 \log_{s+1}(n)}{L_s(n)}, \quad A_2 = \sum_{\epsilon(s) < n \leq x} \frac{\delta_1}{L_s(n)},$$

$$A_3 = \sum_{\epsilon(s) < n \leq x} \frac{\delta_2}{L_s(n) \log_{s+1}(n)}, \quad B_r = \sum_{\epsilon(s) < n \leq x} \frac{\delta_{r+1}}{L_s(n) \log^r_{s+1}(n)}, \quad 2 \leq r \leq m.$$
Let us evaluate these sums. First we can notice that the functions involved in the previous sums are all positive and decreasing for a given constant $\omega \geq e(s)$.

Let’s compose for A_1,

$$\sum_{|\omega|<n\leq x} \frac{\log_{s+1}(n)}{E_s(n)} = \int_{|\omega|}^{x} \frac{\log_{s+1}(t)}{E_s(t)} \, dt + O\left(\frac{\log_{s+1}(t)}{E_s(t)}\right).$$

Thus there is a constant α_1 which includes the sum $\sum_{n=2}^{\lfloor x \rfloor} \frac{\log_{s+1}(n)}{E_s(n)}$ such that

$$A_1 = \frac{\delta_0}{2} \log_{s+1}^2(x) + \alpha_1 + O\left(\frac{\log_{s+1}(x)}{E_s(x)}\right).$$

Using similar argument, we also obtain

$$A_2 = \delta_1 \log_{s+1}(x) + \alpha_2 + O\left(\frac{1}{E_s(x)}\right),$$

$$A_3 = \delta_2 \log_{s+2}(x) + \alpha_3 + O\left(\frac{1}{E_s(x) \log_{s+1}(x)}\right),$$

$$B_r = \frac{-\delta_{r+1}}{(r-1) \log_{s+1}^{r-1}(x)} + \beta_r + O\left(\frac{1}{E_s(x) \log_{s+1}^r(x)}\right).$$

As $\epsilon_m(n)$ is bounded and the series

$$\sum_{n>\epsilon(s)} \frac{1}{E_s(n) \log_{s+1}^m(n)},$$

is convergent for all $m \geq 2$ (Bertrand’s series), with the sum noted S_m, we deduce that

$$\sum_{\epsilon(s)<n\leq x} \frac{\delta_{m+1} \epsilon_m(n)}{E_s(n) \log_{s+1}^m(n)} = S_m + O\left(\frac{1}{\log_{s+1}^m(x)}\right).$$

Putting together the above expression in (8) we infer that

$$\sum_{n\leq x} \frac{1}{f_s(n)} = \frac{\delta_0}{2} \log_{s+1}^2(x) + \delta_1 \log_{s+1}(x) + \delta_2 \log_{s+2}(x) + \alpha_1 + \alpha_2 + \alpha_3 + \sum_{r=2}^{m} \beta_r + S_m$$

$$- \frac{\delta_3}{\log_{s+1}(x)} - \ldots - \frac{\delta_{m+1}}{(m-1) \log_{s+1}^{m-1}(x)} + O\left(\frac{1}{\log_{s+1}^m(x)}\right).$$

Setting $C_s = \alpha_1 + \alpha_2 + \alpha_3 + \sum_{r=2}^{m} \beta_r + S_m$ we find the formula mentioned in the main Theorem. This constant is independent of the value of m because the difference between two developments of $\sum_{n\leq x} \frac{1}{f_s(n)}$ is a quantity which is absorbed by the roundness when $x \to +\infty$. \qed
Acknowledgments. The authors wish to warmly thank their referee for valuable advice and comments which helped to improve the quality of this paper.

REFERENCES