ASYMPTOTICS OF A RENEWAL-LIKE RECURSION AND AN INTEGRAL EQUATION

Ágnes Backhausz, Tamás F. Móri

We consider a renewal-like recursion and prove that the solution is polynomially decaying under suitable conditions. We prove similar results for the corresponding integral equation. In both cases coefficients and functions are of more general form than in the classic cases.

1. INTRODUCTION

In this paper we examine the asymptotics of a renewal-like recursion and a similar integral equation. The motivation comes from probability theory; more precisely, in a random model of publication activity, the asymptotic distribution of the weights of the authors satisfy such equations.

The recursion is of the form

\[x_n = \sum_{j=1}^{n-1} w_{n,j} x_{n-j} + r_n, \quad w_{n,j} = a_j + b_j/n + c_{n,j} \quad (n = 1, 2, \ldots) , \]

where \(w_{n,j} \geq 0 \), and \(a, b, c \) are decaying at least exponentially fast. The precise assumptions are formulated later. Our goal is to give the exact convergence rate of the solution, in particular, to prove that \(x_n \) is polynomially decaying as \(n \to +\infty \) under suitable conditions, and to determine the exponent.

Similar recursions are widely examined, see e.g. Milne-Thompson [17], or Cooper and Frieze [6]. In those cases either the coefficients are special, or only
the last \(m \) terms appear on the right-hand side for some fixed \(m \). Now all previous terms are present, and the weights depend both on \(n \) and \(j \).

On the other hand, taking \((b_n)\) and \((c_n)\) to be 0 and supposing that \((a_n)\) is a probability distribution, we get the well-known renewal formula [9, Chapter XIII]. The asymptotics of the solutions of the latter formula were examined in a more subtle way in [7], for instance, by weaker Tauberian type assumptions. In our case the coefficients are of more general form; however, we have stronger conditions on them. An example will show that these assumptions cannot be totally omitted (see Remark 4).

The continuous counterpart is a Volterra equation of the second kind. We consider the equation

\[
g(t) = \int_0^t w_{t,s} g(t - s) \, ds + r(t)
\]

for \(t > 0 \) and \(g(0) = 1 \). The kernel \(w_{t,s} \) is supposed to be written in the form

\[
0 \leq w_{t,s} = a(s) + \frac{b(s)}{t + d} + c_{t,s},
\]

where \(a \) is a probability density function, and again, \(a, b, c \) are decreasing fast. We will show that \(g(t) \) is between two polynomially decaying functions under suitable conditions, and give the exponent. In addition, assuming that \(g \) is decreasing, we will prove that \(g(t) \) is polynomially decaying as \(t \to +\infty \). We use Laplace transforms and Tauberian theorems in this part.

With \(b = c = 0 \), we get so-called convolution type Volterra equations. In probability theory, this is the classical renewal equation, for which the convergence rate is well known [10, Chapter XI].

Stability properties of Volterra equations of the second kind like (2) were also investigated. For example, in [8] Z-transforms and conditions on the existence of characteristic roots are used to prove statements on the exponential stability of these equations, which turns out to be not always equivalent to asymptotic stability. Furthermore, in [18] we can find results on the asymptotic stability and almost periodicity of the discrete version of the equation in the convolution case, assuming some conditions on the spectrum and using Z-transforms. In this case a multiple of \(x_n \) may also be added to the right hand side of the recurrence equation. In [3], we can find similar results on stability and periodicity for particular equations belonging to the nonconvolution case. In [11, 12, 14], sufficient conditions were given for the boundedness of the solution in the discrete case.

Exact convergence rate in the convolution case and a limit equation for the solution in the discrete nonconvolution case were proved in [1] under more general conditions than ours (exponential decay was not assumed, only finiteness conditions for certain series of the coefficients). However, this limit equation of [1] does not seem to produce the explicit rate of convergence of the solution in the case of equation (1), which is of nonconvolution type.
2. MAIN RESULTS

2.1. The discrete recursion

Consider the following recursion:

\[x_n = \sum_{j=1}^{n-1} w_{n,j} x_{n-j} + r_n, \quad w_{n,j} = a_j + \frac{b_j}{n} + c_{n,j}, \quad (n = 1, 2, \ldots), \]

where \(w_{n,j}, a_n, b_n, c_{n,j}, r_n \) satisfy the following conditions.

(r0) \(w_{n,j} \geq 0 \) for all \(n, j \geq 0 \) and \(x_1 > 0 \).

(r1) \(a_n \geq 0 \) for \(n \geq 1 \), and the greatest common divisor of the set \(\{ n : a_n > 0 \} \) is 1;

(r2) \(r_n \geq 0 \), and there exists an \(n \) such that \(r_n > 0 \);

(r3) there exists \(z > 0 \) such that

\[
1 < \sum_{n=1}^{+\infty} a_n z^n < +\infty, \quad \sum_{n=1}^{+\infty} |b_n| z^n < +\infty, \quad \sum_{n=1}^{+\infty} c_{n,j} |z|^{j} < +\infty, \quad \sum_{n=1}^{+\infty} r_n z^n < +\infty.
\]

It is clear from conditions (r0) and (r2) that \(x_n \geq 0 \) for every \(n \geq 1 \).

Our theorem gives the asymptotics of \((x_n) \). It is polynomially decaying; the exponent is also given.

\textbf{Theorem 1.} Suppose that the sequence \((x_n) \) satisfies recursion (3), conditions (r1)–(r3) hold, and \((x_n) \) has infinitely many positive terms. Then \(x_n^{-\gamma} q^n \to C \) as \(n \to +\infty \), where \(C \) is a positive constant, \(q \) is the positive solution of equation

\[
\sum_{n=1}^{+\infty} a_n q^n = 1, \quad \text{and}
\]

\[
\gamma = \frac{\sum_{n=1}^{+\infty} b_n q^n}{\sum_{n=1}^{+\infty} c_{n,j} q^n}.
\]

\textbf{Remark 1.} The condition on \(w_{n,j} \) in recursion (3) can be modified in the following way.

\[w_{n,j} = a_j + \frac{b_j}{n-j} + c_{n,j}, \quad n = 1, 2, \ldots . \]

The difference may be added to the remainder term \(c_{n,j} \), because we have

\[
\sum_{n=1}^{+\infty} \sum_{j=1}^{n-1} \frac{b_j}{n-j} - \frac{b_j}{n} y^j = \sum_{j=1}^{+\infty} |b_j| y^j \sum_{n=j+1}^{+\infty} \left(\frac{1}{n-j} - \frac{1}{n} \right) = \sum_{j=1}^{+\infty} |b_j| y^j \sum_{n=1}^{+\infty} \frac{1}{n}.
\]
which is finite for $0 < y < z$. Since the generating function of the sequence (a_n) is left continuous at point z, there exists $y < z$ such that $\sum_{n=1}^{+\infty} a_n y^n > 1$.

Remark 2. The condition that the sequence (x_n) has infinitely many positive terms is necessary as the following example shows. Let $r_1 = 1$, $r_n = 0$ if $n > 1$, and $w_{n,j} = a_n \left(1 - \frac{j}{n-j}\right)$. Then we get $x_1 = 1$, $x_2 = x_3 = \cdots = 0$.

2.2. The integral equation

Now we examine an integral equation, which is similar to recursion (3). Namely, let $g : \mathbb{R} \to \mathbb{R}$ be the solution of the following integral equation (we will explain later why the solution exists),

\[
g(t) = \int_0^t w_{t,s} g(t-s) \, ds + r(t)
\]

for $t > 0$ and $g(0) = 1$. Here

\[
w_{t,s} = a(s) + \frac{b(s)}{t} + c_{t,s},
\]

and the following conditions hold.

(i0) $0 \leq w_{t,s}$ holds for $t, s > 0$.

(i1) $a \in L^1[0, +\infty)$ is a probability density function concentrated on the set of positive real numbers. That is, a is nonnegative almost everywhere, and $\int_0^{+\infty} a(s) \, ds = 1$.

(i2) $b \in L^1[0, +\infty)$, and d is a positive constant.

(i3) $r \in L^1[0, +\infty)$ is a nonnegative, continuous function.

(i4) $c : [0, +\infty)^2 \to \mathbb{R}$ is (jointly) measurable, $c_{t,s}$ is integrable on $[0, t]$ with respect to s for all $t > 0$, and $\lim_{t \to +\infty} c_{t,s} = 0$ for a.e. $s > 0$.

(i5) There exists $z > 1$ such that

\[
\int_0^{+\infty} a(t) z^t \, dt < +\infty, \quad \int_0^{+\infty} |b(t)| z^t \, dt < +\infty, \quad \text{and}
\]

(i6) $z^t \int_0^t |c_{t,s}| \, ds$ and $r(t) z^t$ are directly Riemann integrable with respect to t on $[0, +\infty)$.

Recall that a nonnegative function h is directly Riemann integrable on interval $[0, +\infty)$ (see p. 361 of [10]), if and only if it is (Riemann) integrable on every finite interval, and for all $\tau > 0$ we have

\[
\sum_{n=1}^{+\infty} \sup_{n\tau \leq \theta \leq (n+1)\tau} h(\theta) < +\infty,
\]
that is, the upper Riemann sum of \(h \) with span \(\tau \) is finite. As usual, we say that a real function \(h \) is directly Riemann integrable if both its positive and negative parts are directly Riemann integrable.

Equation (4) is a nonlinear Volterra-type integral equation of the second kind. It is easy to check that all conditions of Theorem 3.2 of [16] hold for this equation in a finite interval \(0 \leq t \leq T \). Thus, applying the theorem we get that the equation has a unique and continuous solution for all positive \(T \). Hence \(g(t) \) is defined on the set of nonnegative real numbers, and it is continuous. Since the proof of Theorem 3.2 of [16] relies on Picard approximation, and \(g(0), w, r \) are all nonnegative (see (i0) and (i3)), it is clear that \(g(t) \) is nonnegative for all \(t \geq 0 \).

Our main results are about the asymptotics of \(g(t) \) as \(t \to +\infty \). First we give the order of \(g(t) \) by proving lower and upper bounds. Then assuming that \(g(t) \) is decreasing, we will find the asymptotics of \(g(t) \) using Laplace transforms.

Theorem 2. Let \(g \) be the solution of equation (4). Suppose that \(w \) is nonnegative, all conditions (i1)–(i6) hold, and for all \(T > 0 \) there exists \(t > T \) such that \(g(t) > 0 \). Introduce

\[
\gamma = \int_{0}^{+\infty} b(s) \, ds \int_{0}^{+\infty} sa(s) \, ds.
\]

Then \(0 < \lim \inf_{t \to +\infty} g(t) t^{-\gamma} \leq \sup_{t} g(t) t^{-\gamma} < +\infty \) holds.

Theorem 3. Let \(g \) be the solution of equation (4). In addition to the conditions of Theorem 2 suppose that \(g \) is decreasing. Then \(g(t) t^{-\gamma} \to C \) holds for some \(0 < C < +\infty \) as \(t \to +\infty \).

3. THE DISCRETE CASE: PROOF OF THEOREM 1

3.1. Preliminaries

Condition (r3) implies that \(q \) exists, and \(q < z \). Define \(\tilde{x}_n = q^n x_n, \tilde{a}_j = q^j a_j, \tilde{b}_j = q^j b_j, \tilde{c}_{n,j} = q^n c_{n,j}, \tilde{r}_n = q^n r_n \) for \(n, j \geq 1 \). We get \(\sum_{n=1}^{+\infty} \tilde{a}_n = 1 \) and

\[
\tilde{x}_n = \sum_{j=1}^{n-1} \left(\tilde{a}_j + \frac{\tilde{b}_j}{n-j} + \tilde{c}_{n,j} \right) \tilde{x}_{n-j} + \tilde{r}_n, \quad n = 1, 2, \ldots.
\]

Moreover, condition (r3) holds with \(\tilde{z} = z/q \). Thus we may assume \(\sum_{n=1}^{+\infty} a_n = 1 \), and \(z > 1 \).

Lemma 1. \(x_n > 0 \) for every \(n \) large enough.

Proof. If \(a_k > 0 \) for some integer \(k \), then for every sufficiently large \(n \) we have \(w_{n,k} > 0 \). To see this, note that \(\lim_{n \to +\infty} \frac{b_n}{n-k} = 0 \), and \(\lim_{n \to +\infty} c_{n,k} = 0 \) holds for
fixed k due to condition (r3). Hence, if $x_n > 0$ and n is large enough, then $x_{n+k} > 0$. This implies $x_{n+k} > 0$ for $\ell = 1, 2, \ldots$. Due to condition (r1), every sufficiently large n is a linear combination of some values of k for which $a_k > 0$. Therefore x_n is positive for every n large enough. □

We need some more notations.

Define $y_n = x_n n^{-\gamma}$ for $n \geq 1$. We have

$$y_n = \sum_{j=1}^{n-1} w_{n,j} \left(1 - \frac{j}{n}\right)^\gamma y_{n-j} + r_n n^{-\gamma}, \quad n = 1, 2, \ldots.$$ \hspace{1cm} (5)

By standard Taylor expansion we get that for $0 < e^{2\varepsilon} < z$ we have

$$\left(1 - \frac{j}{n}\right)^\gamma = 1 - \frac{j}{n} + R_{n,j},$$

where

$$|R_{n,j}| \leq \frac{|\gamma (\gamma - 1)|}{2} \frac{j^2}{n^2} e^{\varepsilon}$$

holds uniformly in j for all n large enough, say $n \geq L$. Assuming that the coefficients satisfy equation (3) we get

$$w_{n,j} \left(1 - \frac{j}{n}\right)^\gamma = a_j + \frac{-1}{n} (b_j - \gamma j a_j) - \frac{1}{n^2} \gamma j b_j + w_{n,j} R_{n,j} + c_{n,j} \left(1 - \frac{j}{n}\right).$$ \hspace{1cm} (8)

3.2. Boundedness of (y_n)

Our next goal is to prove that the sequence (y_n) is bounded from above, and its limit inferior is positive. Before doing so we prove another lemma.

Lemma 2. For every positive integer k we have

$$\sum_{n=k}^{+\infty} \left| \sum_{j=1}^{n-k} w_{n,j} \left(1 - \frac{j}{n}\right)^\gamma - a_j \right| < +\infty. \hspace{1cm} (9)$$

Proof. Using equation (8) we obtain

$$\sum_{n=k}^{+\infty} \left| \sum_{j=1}^{n-k} w_{n,j} \left(1 - \frac{j}{n}\right)^\gamma - a_j \right| = \sum_{n=k}^{+\infty} \left| \frac{1}{n} \sum_{j=1}^{n-k} (b_j - \gamma j a_j) - \frac{1}{n^2} \sum_{j=1}^{n-k} j b_j + \sum_{j=1}^{n-k} w_{n,j} R_{n,j} + \sum_{j=1}^{n-k} c_{n,j} \left(1 - \frac{j}{n}\right) \right|$$

$$\leq \sum_{n=k}^{+\infty} \left(\frac{1}{n} \sum_{j=n-k+1}^{n-k+1} |\gamma j a_j - b_j| + \frac{1}{n^2} \sum_{j=1}^{n-k} j |b_j| + \sum_{j=1}^{n-k} |w_{n,j} R_{n,j}| + (1 + |\gamma|) \sum_{j=1}^{n-k} |c_{n,j}| \right).$$
For the first term we used \(\sum_{j=1}^{+\infty} (b_j - \gamma_ja_j) = 0 \) holds by the definition of \(\gamma \).

Let us divide the sum into four parts and examine them separately. By condition (r3) for the first two we have

\[
\sum_{n=k}^{+\infty} \frac{1}{n} \sum_{j=n-k+1}^{+\infty} |\gamma_ja_j - b_j| \leq \sum_{n=k}^{+\infty} \sum_{j=n-k+1}^{+\infty} (|\gamma_ja_j + |b_j|) = |\gamma| \sum_{j=1}^{+\infty} j^2a_j + \sum_{j=1}^{+\infty} j|b_j| < +\infty;
\]

\[
\sum_{n=1}^{+\infty} \frac{|\gamma|}{n^2} \sum_{j=1}^{n-1} j|b_j| \leq |\gamma| \sum_{n=1}^{+\infty} \frac{1}{n^2} \sum_{j=1}^{n} j|b_j| < +\infty.
\]

Moreover, using (7), we obtain

\[
\sum_{n=L}^{+\infty} \sum_{j=1}^{n-1} |w_{n,j}R_{n,j}| \leq \frac{|\gamma(\gamma - 1)|}{2} \sum_{n=L}^{+\infty} \sum_{j=1}^{n-1} (a_j + |b_j| + |c_{n,j}|) \frac{j^2}{n^2} e^{j\varepsilon}
\]

\[
\leq \frac{|\gamma(\gamma - 1)|}{2} \left[\sum_{n=1}^{+\infty} \sum_{j=n+1}^{+\infty} (a_j + |b_j|) \frac{j^2}{n^2} e^{j\varepsilon} + \sum_{n=1}^{+\infty} \sum_{j=1}^{n-1} |c_{n,j}| z^j \right] < +\infty
\]

by condition (r3) and the choice of \(\varepsilon \).

Similarly,

\[
\sum_{n=1}^{+\infty} \sum_{j=1}^{n-1} |c_{n,j}| \leq \sum_{n=1}^{+\infty} \sum_{j=1}^{n-1} |c_{n,j}| z^j < +\infty
\]

also holds. Thus we have proved (9).

Lemma 3. \((y_n) \) is bounded from above.

Proof. Let \(z_n = \max\{1, y_1, \ldots, y_n\} \). Then \(y_n \leq z_n \), \(z_n \) is increasing, and

\[
z_n \leq z_{n-1} \max \left\{ 1, \sum_{j=1}^{n-1} w_{n,j} \left(1 - \frac{j}{n} \right)^{\gamma} + r_n n^{-\gamma} \right\}
\]

\[
\leq z_{n-1} \left(1 + \sum_{j=1}^{n-1} w_{n,j} \left(1 - \frac{j}{n} \right)^{\gamma} - a_j + r_n n^{-\gamma} \right) = z_{n-1} (1 + s_n),
\]

where \(s_n = \sum_{j=1}^{n-1} w_{n,j} \left(1 - \frac{j}{n} \right)^{\gamma} - a_j + r_n n^{-\gamma} \).

Iterating this we obtain \(\sup_{n \geq 1} z_n \leq \prod_{n=1}^{+\infty} (1 + s_n) \). In order to show that this quantity is finite it is sufficient to prove that \(\sum_{n=1}^{+\infty} s_n < +\infty \) holds. The latter is
implied by Lemma 2 with \(k = 1 \), and by the fact that
\[
\sum_{n=1}^{+\infty} r_n n^{-\gamma} = O\left(\sum_{n=1}^{+\infty} r_n z^n \right) < +\infty.
\]
Thus the sequence \((y_n)\) is bounded from above.

Lemma 4. \(\liminf_{n \to +\infty} y_n > 0 \).

Proof. This is similar to the upper bound, therefore we only outline the proof, omitting the details.

Based on Lemma 1, suppose that \(x_n > 0 \) for all \(n \geq N \). By condition (r2) and the definition of \(y_n \) we have
\[
y_n \geq \sum_{j=1}^{n-N} w_{n,j} \left(1 - \frac{j}{n} \right)^\gamma y_{n-j}.
\]
We define \(z_n = \min_{N \leq j \leq n} y_j \). Then we obtain
\[
z_n \geq z_{n-1} \min \left\{ 1, \sum_{j=1}^{n-N} w_{n,j} \left(1 - \frac{j}{n} \right)^\gamma \right\}
\]
\[
\geq z_{n-1} \left(\sum_{j=1}^{n-N} a_j - \left| \sum_{j=1}^{n-N} w_{n,j} \left(1 - \frac{j}{n} \right)^\gamma - a_j \right| \right)
\]
\[
= z_{n-1} \left(1 - \sum_{j=n-N+1}^{+\infty} a_j - \left| \sum_{j=1}^{n-N} w_{n,j} \left(1 - \frac{j}{n} \right)^\gamma - a_j \right| \right) = z_{n-1} (1 - s_n),
\]
where
\[
s_n = \sum_{j=n-N+1}^{+\infty} a_j + \left| \sum_{j=1}^{n-N} w_{n,j} \left(1 - \frac{j}{n} \right)^\gamma - a_j \right|.
\]
This implies that \(\inf_{n \geq N} y_n \geq \lim_{n \to +\infty} z_n \geq z_N \prod_{n=N+1}^{+\infty} (1 - s_n) \). For the proof of the positivity of the right-hand side we need to show \(\sum_{n=N+1}^{+\infty} s_n < \infty \). This is a consequence of Lemma 2 with \(k = N \), and the following bound;
\[
\sum_{n=N+1}^{+\infty} \sum_{j=n-N+1}^{+\infty} a_j < \sum_{j=1}^{+\infty} j a_j < \infty.
\]
We conclude \(\inf_{n \geq N} y_n > 0 \), and hence \(\liminf_{n \to +\infty} y_n > 0 \).
3.3. Final step

The remaining part of the proof is similar to the proof of the discrete renewal theorem.

Equation (8) implies

\[y_n = \sum_{j=1}^{n-1} \left(a_j + \frac{b_j - \gamma ja_j}{n-j} \right) \left(\frac{1}{n(n-j)} \gamma jb_j \right) + w_{n,j}R_{n,j} + c_{n,j} \left(1 - \frac{\gamma j}{n} \right) y_{n-j} + r_n n^{-\gamma}. \]

Fix a positive integer \(N \). Then we obtain from (10) by summation that

\[\sum_{n=1}^{N} y_n = \sum_{n=1}^{N} \sum_{j=1}^{n-1} \left(a_j + \frac{b_j - \gamma ja_j}{n-j} \right) y_{n-j} + u_N \]

with an appropriately chosen sequence \((u_N)\). Here \(u_N \) is convergent as \(N \to \infty \); let \(u \) denote the limit. In order to show this, since \((y_n)\) is bounded, it is sufficient to prove

\[\sum_{n=1}^{\infty} \sum_{j=1}^{n-1} \left(\frac{|b_j - \gamma ja_j|}{n(n-j)} \right) + \frac{1}{n^2} |\gamma| j a_j + |w_{n,j}R_{n,j}| + |c_{n,j}| \left(1 + |\gamma| \right) < \infty; \]

\[\sum_{n=1}^{\infty} r_n n^{-\gamma} < \infty. \]

We have almost done it before; the only thing left is to show the convergence for the first term in the double sum. In this case

\[\sum_{n=1}^{\infty} \sum_{j=1}^{n-1} \frac{|b_j - \gamma ja_j|}{n(n-j)} \leq \sum_{n=1}^{\infty} \sum_{j=1}^{n-1} \frac{|j| |b_j| + |\gamma| j^2 a_j}{n(n-j)} \]

\[= \sum_{j=1}^{\infty} \sum_{n=j+1}^{\infty} \frac{1}{n(n-j)} \leq \sum_{j=1}^{\infty} \frac{|b_j| + |\gamma| j^3 a_j}{n^2} < \infty. \]

Introduce variable \(m = n-j \) instead of \(n \) in equation (11). Then

\[\sum_{n=1}^{N} y_n = \sum_{j=1}^{N-1} \sum_{n=j+1}^{N} \left(a_j + \frac{b_j - \gamma ja_j}{n-j} \right) y_{n-j} + u_N \]

\[= \sum_{j=1}^{N-1} \sum_{m=1}^{N-j} \left(a_j + \frac{b_j - \gamma ja_j}{m} \right) y_m + u_N = \sum_{m=1}^{N-1} y_m \sum_{j=1}^{N-m} a_j + \frac{b_j - \gamma ja_j}{m} + u_N. \]
Since
\[\sum_{j=1}^{\infty} \left(a_j + \frac{b_j - \gamma ja_j}{m} \right) = 1, \]
we have
\[\sum_{n=1}^{N} y_n = \sum_{m=1}^{N} y_m \left(1 - \sum_{j=N-m+1}^{\infty} \left(a_j + \frac{b_j - \gamma ja_j}{m} \right) \right) + u_N. \]
These imply that
\[\sum_{m=0}^{N-1} y_{N-m} \sum_{j=m+1}^{\infty} a_j = \sum_{m=1}^{N} y_m \sum_{j=N-m+1}^{\infty} a_j = u_N - \sum_{m=1}^{N} y_m \sum_{j=N-m+1}^{\infty} \frac{b_j - \gamma ja_j}{m}. \]
The second term on the right-hand side converges to 0 as \(N \to \infty \), because
\[\sum_{m=1}^{N} y_m \sum_{j=N-m+1}^{\infty} \left| \frac{b_j - \gamma ja_j}{m} \right| \leq \left(\sup_n y_n \right) \sum_{m=1}^{N} \frac{1}{m} \sum_{j=N-m+1}^{\infty} \left(|b_j| + |\gamma ja_j| \right). \]
The sum inside is estimated in the following way. Let \(\varepsilon > 0 \) such that \(e^\varepsilon < z \) holds. Then
\[\sum_{j=N-m+1}^{\infty} \left(|b_j| + |\gamma ja_j| \right) \leq K e^{-(N-m)\varepsilon}, \]
where
\[K = \sum_{j=1}^{\infty} (|b_j| + |\gamma ja_j| e^\varepsilon) < \infty. \]
Now, using the notation \(M = \lfloor \sqrt{N} \rfloor \), we get
\[\sum_{m=1}^{N} \frac{K}{m} e^{-(N-m)\varepsilon} \leq \sum_{m=1}^{N-M} \frac{K}{m} e^{-(N-m)\varepsilon} + \sum_{m=N-M+1}^{N} \frac{K}{m} e^{-(N-m)\varepsilon} \]
\[\leq NK e^{-M\varepsilon} + \frac{MK}{N-M}, \]
which tends to 0 as \(N \to +\infty \). We conclude
\[\sum_{m=0}^{N-1} y_{N-m} \sum_{j=m+1}^{\infty} a_j \to u \quad (N \to +\infty). \]

Modifying the proof of Lemma 2, namely, using equation (8), condition (r3) and the fact that the sequence of arithmetic means converges to zero if the original sequence is nonnegative and converges to zero, it is easy to see that
\[\sum_{j=1}^{n-1} \left| w_{n,j} \left(1 - \frac{j}{n} \right)^\gamma - a_j \right| \to 0 \quad (n \to +\infty). \]
This and (5), together with the boundedness of \((y_n) \) imply that

\[
(13) \quad y_n = \sum_{j=1}^{n-1} a_j y_{n-j} \to 0,
\]

as \(n \to +\infty \).

From now on the argument is the usual one.

Let \((n_k) \) be a subsequence of the natural numbers that satisfies

\[
\lim_{k \to +\infty} y_{n_k} = \limsup_{n \to +\infty} y_n =: \overline{y}.
\]

From (13), for all \(\ell \leq M \), we get

\[
\overline{y} = \lim_{k \to +\infty} y_{n_k} \leq a_\ell \liminf_{k \to +\infty} y_{(n_k-\ell)} + \limsup_{k \to +\infty} \sum_{j \leq M, j \neq \ell} a_j y_{(n_k-j)}
\]

\[
\leq a_\ell \liminf_{k \to +\infty} y_{(n_k-\ell)} + \sum_{j \neq \ell, j \leq M} a_j \limsup_{k \to +\infty} y_{(n_k-j)} + (\sup_{n} y_n) \sum_{j = M+1}^{+\infty} a_j
\]

\[
\leq a_\ell \liminf_{k \to +\infty} y_{(n_k-\ell)} + (1 - a_\ell)\overline{y} + \sup_{n} y_n \sum_{j = M+1}^{+\infty} a_j.
\]

Since \(M \) may be arbitrarily large, this immediately implies

\[
\lim_{k \to +\infty} y_{(n_k-\ell)} = \overline{y},
\]

for all \(a_\ell > 0 \). By iteration we obtain

\[
\lim_{k \to +\infty} y_{(n_k-\ell_1 - \cdots - \ell_i)} = \overline{y},
\]

for all positive \(a_{\ell_1}, \ldots, a_{\ell_i} \). By condition (r1) for all sufficiently large \(m \) we have

\[
\lim_{k \to +\infty} y_{n_k-m} = \overline{y}.
\]

Modifying the subsequence we may assume that this holds for all \(m = 0, 1, \ldots \). Hence choosing \(N = n_k \) in (12) we can see that

\[
\overline{y} \sum_{m=0}^{+\infty} \sum_{j=m+1}^{+\infty} a_j = u.
\]

For \(y = \liminf_{n \to +\infty} y_n \) the same argument shows

\[
\underline{y} \sum_{m=0}^{+\infty} \sum_{j=m+1}^{+\infty} a_j = u.
\]

Hence \(\overline{y} = y \), that is, the limit \(\lim_{n \to +\infty} y_n = C \) exists. We have already proved that this is finite and positive. This implies Theorem 1.
Remark 3. It is well known that if \(y_n = \sum_{j=1}^{n-1} a_j y_{n-j} \) holds for all \(n \), instead of (13), then \(y_n \) is convergent. On the other hand, (13) is not yet sufficient for the convergence of \((y_n) \). For example, let \(y_n = 2 + \sin(\log(1 + n)) \). Then

\[
|y_n - y_{n-j}| \leq \log(1 + n) - \log(1 + n - j) \leq \frac{j}{1 + n - j},
\]

hence

\[
|y_n - \sum_{j=1}^{n-1} a_j y_{n-j}| \leq y_n \sum_{j=1}^{\infty} a_j + \sum_{j=1}^{n-1} |y_n - y_{n-j}| a_j \leq 3 \sum_{j=1}^{\infty} a_j + 3 \sum_{j=1}^{n-1} \frac{ja_j}{1 + n - j}.
\]

This converges to zero with \(M = n/2 \), but \(y_n \) does not converge.

Remark 4. If \(w_{k,i} = a_i \), then \(x_k \to C \) by the arithmetic version of the renewal theorem. The following example shows that a remainder, though converging to 0, may change this. Let \((a_i) \) be arbitrary, \(x_k = 2 + \sin(\log(k + 1)) \), and

\[
w_{k,i} = a_i + \left(x_k - \sum_{j=1}^{k-1} x_{k-j} a_j \right)^{-1} \sum_{j=1}^{k-1} x_j.
\]

Then \(w_{k,i} = a_i + o(1) \), and \(x_k = \sum_{i=1}^{k-1} x_{k-i} w_{k,i} + 2\delta_{k,1} \).

4. The Continuous Case: Proof of Theorem 2

4.1. Preliminaries

Lemma 5. Under the conditions of Theorem 2 we have \(g(t) > 0 \) for every \(t \) large enough.

Proof. Choose \(0 < s_0 \) and \(\delta > 0 \) such that the set \(S' = \{ s \in (0, s_0) : a(s) > 3\delta \} \) has positive Lebesgue measure.

Let \(\ell(s) = \sup \{ \ell \geq s : |c_{\ell,s}| \geq \delta \} \). Then \(\ell(s) < +\infty \) for a.e. \(s > 0 \) by condition (i4). Though \(\ell \) is not necessarily Borel measurable, yet it is Lebesgue measurable by the measurable projection theorem, for the superlevel set \(\{ \ell > K \} \) is just the projection of the two dimensional measurable set \(\{ (s, t) : 0 < s \leq t, K < t, |c_{\ell,s}| \geq \delta \} \) onto the first coordinate. Hence \(U_t = \{ t < \ell \} \), \(t > 0 \) is an increasing family of Lebesgue measurable sets, and the Lebesgue measure of \((0, s_0) \setminus U_t \) tends to 0 as \(t \to +\infty \). The same holds for the function \(V_t = \{ s \in (0, t) : |b(s)| \leq \delta(t + d) \} \). Thus we can find a threshold \(T \geq s_0 \) such that the Lebesgue measure of \(S = S' \cap U_T \cap V_T \) is positive. Obviously, \(w_{t,s} \geq \delta \) for all \(t \geq T \) and \(s \in S \). By the Lebesgue density theorem we may assume that \(S \) only consists of points with density 1.
By the continuity of g there exists a whole open interval I above T where
$g(t)$ is separated from zero. Let ε denote the length of I, and $\eta > 0$ the infimum of
g over I. Then for $t \in S + I$ we have
\[
g(t) \geq \int_0^t w_{t,s} g(t - s) \, ds \geq \int_{S \cap (t - I)} w_{t,s} g(t - s) \, ds \geq \delta \eta \lambda(S \cap (t - I)) > 0,
\]
where λ stands for the Lebesgue measure.

Since the set sum $S + I$ is an open set, we can iterate this procedure to obtain
that g is positive everywhere on the set $I \cup (S + S + I) \cup (S + S + S + I) \cup \ldots$.

The proof can be completed by showing that this set contains every sufficiently large real number (this is a well-known fact; we include a proof for completeness). In other words, if t is large enough, then it can be written in the form $t = s_1 + \cdots + s_n + r$, where $s_1, \ldots, s_n \in S$, $n \in \mathbb{N}$, and $0 < r < \varepsilon$. In fact, this is true for arbitrary $S \subset \mathbb{R}^+$ that has two incommensurable elements α and β (hence for every set of positive Lebesgue measure). Indeed, by the equidistribution theorem there exists positive integers k and m such that
\[
k < m \alpha \frac{1}{\beta} < k + \frac{\varepsilon}{\beta},
\]
that is, $k \beta < m \alpha$, and their distance is less than ε. Consequently, in the finite sequence
\[
n k \beta < (n - 1) k \beta + m \alpha < (n - 2) k \beta + 2 m \alpha < \cdots < n m \alpha
\]
the distance between neighbouring terms is less than ε. If n is large enough, then $(n + 1) k \beta < n m \alpha$, i.e., the largest term of the sequence above is bigger than the smallest term of the next sequence. Thus every $t \geq nk \beta$ is sufficiently close to a positive linear combination of α and β.

Let us introduce the notation
\[
H(t) = g(t) (t + d)^{-\gamma}, \quad (t \geq 0).
\]
From (4) we obtain
\[
H(t) = \int_0^t w_{t,s} \left(\frac{t - s + d}{t + d} \right)^{\gamma} H(t - s) \, ds + r(t)(t + d)^{-\gamma} \tag{14}
\]
for $t > 0$, and $H(0) = d^{-\gamma}$.

Let us choose ε in a similar way as we did in the discrete case. Namely, we have $e^{2\varepsilon} < z$ with z of condition (i5). In what follows equations (15), (16), and (17) correspond to (6), (7), and (8), resp. Firstly,
\[
\left(\frac{t - s + d}{t + d} \right)^{\gamma} = \left(1 - \frac{s}{t + d} \right)^{\gamma} = 1 - \frac{\gamma s}{t + d} + R_{t,s}, \tag{15}
\]
Asymptotics of renewal-like equations

where

\[|R_{t,s}| \leq \frac{|\gamma(\gamma - 1)|}{2} \frac{s^2}{t^2} e^{\sigma}, \]

if \(t \) is large enough, say \(t \geq L \). Finally, from the decomposition of \(w_{t,s} \) we get

\[w_{t,s}(1 - \frac{s}{t + d})^\gamma = a(s) + \frac{b(s) - \gamma s a(s)}{t + d} - \frac{\gamma sb(s)}{(t + d)^2} + w_{t,s} R_{t,s} + c_{t,s}(1 - \frac{\gamma s}{t + d}). \]

4.2. Boundedness of \(H \)

The method of proof is discretization; in this way all we need to do is similar to what we did in the discrete case.

Before proving boundedness we need another lemma.

Lemma 6. For every fixed \(T \geq 0 \) the function

\[A(t) = \left| \int_0^{t-T} \left(w_{t,s}(1 - \frac{s}{t + d})^\gamma - a(s) \right) ds \right| \]

is directly Riemann integrable on \([T, +\infty)\).

Proof. Fix \(\tau > 0 \). Then

\[\sum_{n=\left[\frac{T}{\tau}\right]}^{+\infty} \sup_{n\tau \leq \theta \leq (n+1)\tau} \int_0^\theta |c_{\theta,s}| z^s ds < +\infty, \]

according to condition (i6). Now we prove that

\[\sum_{n=\left[\frac{T}{\tau}\right]}^{+\infty} \sup_{n\tau \leq \theta \leq (n+1)\tau} A(\theta) = \sum_{n=\left[\frac{T}{\tau}\right]}^{+\infty} \sup_{0 \leq \theta \leq \tau} A(n\tau + \theta) < +\infty. \]

From the definition of \(\gamma \) it follows that \(\int_0^{+\infty} (b(s) - \gamma sa(s)) ds = 0 \). Using this and equation (17) we obtain that

\[A(n\tau + \theta) = \int_0^{n\tau + \theta - T} \left(w_{n\tau + \theta,s}(1 - \frac{s}{n\tau + \theta + d})^\gamma - a(s) \right) ds \]

\[= \int_0^{n\tau + \theta - T} \frac{b(s) - \gamma sa(s)}{n\tau + \theta + d} ds - \frac{\gamma}{(n\tau + \theta + d)^2} \int_0^{n\tau + \theta - T} sb(s) ds \]

\[+ \int_0^{n\tau + \theta - T} w_{n\tau + \theta,s} R_{n\tau + \theta,s} ds + \int_0^{n\tau + \theta - T} c_{n\tau + \theta,s}(1 - \frac{\gamma s}{n\tau + \theta + d}) ds \]

\[\leq \int_0^{+\infty} \frac{|b(s) - \gamma sa(s)|}{n\tau + \theta + d} ds + \frac{|\gamma|}{(n\tau + \theta + d)^2} \int_0^{n\tau + \theta} s |b(s)| ds \]

\[+ \int_0^{n\tau + \theta} |w_{n\tau + \theta,s} R_{n\tau + \theta,s}| ds + \left(1 + |\gamma| \right) \int_0^{n\tau + \theta} |c_{n\tau + \theta,s}| ds \]
holds for all $\theta > 0$.

By handling the four terms separately, the proof of (19) is quite similar to the proof of Lemma 2. The first two terms are finite by condition (i5). Inequality (16), condition (i5), and the choice of ε imply the finiteness of the third term, and we can use condition (i5) again for the last term. We omit the details. The nonnegativity and integrability of A is clear, for it is a continuous function of t. Thus the proof of the lemma is completed.

Lemma 7. $H(t)$ is bounded from above.

We define $Z(t) = \max\{1, H(s) : 0 \leq s \leq t\}$ for $t \geq 0$. This is finite, because H, as well as g, is continuous.

First we give an upper bound for $\sup_{0 < \theta \leq \tau} H(t + \theta)$, where t and τ are fixed positive numbers. Introduce

$$w^{*}_{t,s} = w_{t,s} \left(1 - \frac{s}{t + d}\right)^{\gamma} \quad 0 < t, \quad 0 \leq s \leq t.$$

Using the nonnegativity of w and r, equation (14), and the definition of Z, we get

\begin{align*}
(20) \quad H(t + \theta) &= \int_{0}^{\theta} w^{*}_{t+s, s} H(t + \theta - s) \, ds \\
&\quad + \int_{\theta}^{t+\theta} w^{*}_{t+s, s} H(t + \theta - s) \, ds + r(t + \theta)(t + \theta + d)^{-\gamma} \\
&\leq \int_{0}^{\theta} w^{*}_{t+s, s} \, ds \, Z(t + \theta) + \left[\int_{\theta}^{t+\theta} w^{*}_{t+s, s} \, ds + r(t + \theta)(t + \theta + d)^{-\gamma} \right] Z(t) \\
&= \int_{0}^{\theta} w^{*}_{t+s, s} \, ds \, [Z(t + \theta) - Z(t)] + \left[\int_{\theta}^{t+\theta} w^{*}_{t+s, s} \, ds + r(t + \theta)(t + \theta + d)^{-\gamma} \right] Z(t).
\end{align*}

Next we want to prove that there exists $\tau_{0} > 0$, and for every τ, $0 < \tau \leq \tau_{0}$, a positive integer $N(\tau)$ such that

\begin{align*}
(21) \quad \sup_{0 \leq \theta \leq \tau} \int_{0}^{\theta} w^{*}_{n\tau+s, s} \, ds \leq \frac{1}{2},
\end{align*}

provided $n > N(\tau)$.

To show this we will give an upper bound on

\begin{align*}
(22) \quad w^{*}_{n\tau+s, s} = \left(1 - \frac{s}{n\tau + \theta + d}\right)^{\gamma} \left(a(s) + \frac{b(s)}{n\tau + \theta + d} + c_{n\tau+s, s}\right).
\end{align*}

We clearly have

$$\left(1 - \frac{s}{n\tau + \theta + d}\right)^{\gamma} \leq \left(1 + \frac{\theta}{d}\right)^{|\gamma|} \leq \exp\left(\frac{\theta |\gamma|}{d}\right).$$
and

\[a(s) + \frac{b(s)}{n^\tau + \theta + a} \leq a(s) + \frac{|b(s)|}{d}. \]

Hence, for \(0 \leq \theta \leq \tau \) we can write

\[\int_0^\theta w^*_{n\tau+\theta,s} \, ds \leq \exp \left(\frac{\theta|\gamma|}{d} \right) \left[\int_0^\theta (a(s) + \frac{|b(s)|}{d}) \, ds + \int_0^\theta |c_{n\tau+\theta,s}| \, ds \right] \]

\[\leq \exp \left(\frac{\theta|\gamma|}{d} \right) \int_0^\tau (a(s) + \frac{|b(s)|}{d}) \, ds + z^{n\tau + \theta} \int_0^\theta |c_{n\tau+\theta,s}| \, ds, \]

if \(n \) is large enough, namely, \(n \geq |\gamma|/2d\varepsilon \) will do. The first term on the right-hand side can be arbitrarily small if \(\tau \) is fixed small enough. As to the second term, we have the upper bound

\[\sup_{0 \leq \theta \leq \tau} z^{n\tau + \theta} \int_0^\theta |c_{n\tau+\theta,s}| \, ds \leq \sup_{n\tau \leq \theta \leq (n+1)\tau} z^\theta \int_0^\theta |c_{\theta,s}| \, ds, \]

which tends to 0 as \(n \to +\infty \) by condition (i6). Thus (21) is satisfied if \(n \) is greater than a certain threshold \(N(\tau) \).

For any \(0 < \tau < \tau_0 \) and \(t = n\tau, n > N(\tau) \) inequality (20) implies that

\[\sup_{0 < \theta \leq \tau} H(t + \theta) \leq \frac{1}{2} \left[Z(t + \tau) - Z(t) \right] \]

\[+ \sup_{0 < \theta \leq \tau} \left[\int_0^\theta w^*_{\tau+\theta,s} \, ds + r(t + \theta + d)(t + \theta + d)^{-\gamma} \right] Z(t). \]

Here we use that \(Z \) is nonnegative and increasing by definition.

We clearly have \(Z(t + \tau) = \max \{ Z(t), \sup_{0 < \theta \leq \tau} H(t + \theta) \} \). Therefore we obtain that

\[Z(t + \tau) \leq \max \left\{ Z(t), \frac{1}{2} \left[Z(t + \tau) - Z(t) \right] \right. \]

\[+ \sup_{0 < \theta \leq \tau} \left[\int_0^\theta w^*_{\tau+\theta,s} \, ds + r(t + \theta)(t + \theta + d)^{-\gamma} \right] Z(t) \}, \]

from which it follows that

\[Z(t + \tau) - Z(t) \leq \left(\frac{1}{2} \left[Z(t + \tau) - Z(t) \right] \right. \]

\[+ \left. \sup_{0 < \theta \leq \tau} \int_0^\theta w^*_{\tau+\theta,s} \, ds - 1 + r(t + \theta)(t + \theta + d)^{-\gamma} \right] Z(t) \]

\[+ \left. \left[\int_0^\theta w^*_{\tau+\theta,s} \, ds - 1 + r(t + \theta)(t + \theta + d)^{-\gamma} \right] \right) \]

\[+ \left. \left[\int_0^\theta w^*_{\tau+\theta,s} \, ds - 1 + r(t + \theta)(t + \theta + d)^{-\gamma} \right] \right) \]

where \(x^+ \) denotes \(\max (x, 0) \), as usual. Hence

\[Z(t + \tau) - Z(t) \leq 2 \left(\sup_{0 < \theta \leq \tau} \left[\int_0^\theta w^*_{\tau+\theta,s} \, ds - 1 + r(t + \theta)(t + \theta + d)^{-\gamma} \right] \right) \]

\[+ \left. \left[\int_0^\theta w^*_{\tau+\theta,s} \, ds - 1 + r(t + \theta)(t + \theta + d)^{-\gamma} \right] \right) \]

\[Z(t). \]
We continue with deriving an upper bound for the right-hand side. Since a is a probability density function, we have

$$
\sup_{0 < \theta \leq \tau} \left[\int_0^{t+\theta} w_{t+\theta,s}^* \, ds - 1 \right] \leq \sup_{0 < \theta \leq \tau} \left[\int_0^{t+\theta} w_{t+\theta,s}^* \, ds - \int_0^{t+\theta} a(s) \, ds \right] \\
\quad \leq \sup_{0 < \theta \leq \tau} \left| \int_0^{t+\theta} (w_{t+\theta,s}^* - a(s)) \, ds \right|.
$$

Therefore

$$
Z(t + \tau) - Z(t) \leq Z(t) \left(\sup_{0 < \theta \leq \tau} \left| \int_0^{t+\theta} (w_{t+\theta,s}^* - a(s)) \, ds \right| \right) \\
+ \sup_{0 < \theta \leq \tau} r(t + \theta)(t + \theta + d)^{-\gamma}
$$

for all $0 < \tau \leq \tau_0$, $t = n\tau$, $n \geq N(\tau)$.

Similarly to Lemma 3 of the discrete case, for the boundedness of $Z(n\tau)$ from above it suffices to prove that

$$
\sum_{n=1}^{+\infty} \sup_{0 < \theta \leq \tau} \left| \int_0^{n\tau + \theta} (w_{n\tau+\theta,s}^* - a(s)) \, ds \right| \\
+ \sum_{n=1}^{+\infty} \sup_{0 \leq \theta \leq \tau} r(n\tau + \theta)(n\tau + \theta + d)^{-\gamma} < +\infty.
$$

Lemma 6 with $T = 0$ implies that the first sum is finite. Since by condition (i6) $r(t)z^t$ is directly Riemann integrable, it follows that the second sum is also finite. Thus we conclude that the sequence

$$
Z(n\tau) = \max \{ 1, H(s) : 0 \leq s \leq n\tau \}
$$

is bounded from above if τ is small enough. Hence the function H is also bounded from above.

Lemma 8. $\lim_{t \to +\infty} \inf H(t) > 0$.

Proof. Like in the discrete case, we omit the details that are straightforward modifications of the previous lemma, and only give a sketch of the proof.

Based on Lemma 5, we can suppose that $H(t) > 0$ for all $t \geq T$. This time define

$$
Z(t) = \min \{ H(s) : T \leq s \leq t \},
$$

for $t \geq T$.

Let us derive a lower bound for $H(t + \theta)$. Let $t > T$ and $\theta > 0$. Then we have

$$H(t + \theta) = \int_{0}^{t+\theta} w_{t+\theta,s}^* H(t + \theta - s) \, ds + r(t + \theta)(t + \theta + d)^{-\gamma}$$

$$\geq \int_{0}^{\theta} w_{t+\theta,s}^* H(t + \theta - s) \, ds + \int_{\theta}^{t+\theta} w_{t+\theta,s}^* H(t + \theta - s) \, ds$$

$$\geq Z(t + \theta) \int_{0}^{\theta} w_{t+\theta,s}^* \, ds + Z(t) \int_{\theta}^{t+\theta} w_{t+\theta,s}^* \, ds$$

$$= [Z(t + \theta) - Z(t)] \int_{0}^{\theta} w_{t+\theta,s}^* \, ds + Z(t) \int_{\theta}^{t+\theta} w_{t+\theta,s}^* \, ds.$$

Now Z is decreasing. Applying (21) we obtain that

$$H(t + \theta) \geq \frac{1}{2} [Z(t + \theta) - Z(t)] + Z(t) \int_{0}^{t+\theta} w_{t+\theta,s}^* \, ds$$

for $0 < \theta \leq \tau$. Taking infimum, subtracting $Z(t)$ and using the fact that a is a probability density function we get

$$Z(t + \tau) - Z(t) \geq \min \left\{ 0, \frac{1}{2} [Z(t + \tau) - Z(t)] + Z(t) \left[\inf_{0<\theta\leq\tau} \int_{0}^{t+\theta} w_{t+\theta,s}^* \, ds - 1 \right] \right\},$$

from which it follows that

$$Z(t + \tau) - Z(t) \geq 2 \min \left\{ 0, Z(t) \left[\inf_{0<\theta\leq\tau} \int_{0}^{t+\theta} w_{t+\theta,s}^* \, ds - 1 \right] \right\}$$

$$\geq -2 \left[\sup_{0<\theta\leq\tau} \left| \int_{0}^{t+\theta} (w_{t+\theta,s}^* - a(s)) \, ds \right| + \int_{t-T}^{\infty} a(s) \, ds \right] Z(t).$$

Similarly to Lemma 4, in order to prove that $\lim_{n \to +\infty} Z(T + n\tau) > 0$ it suffices to show that

$$\sum_{n=1}^{+\infty} \int_{(n-1)\tau}^{n\tau} a(s) \, ds + \sum_{n=1}^{+\infty} \sup_{0<\theta\leq\tau} \left| \int_{0}^{n\tau+\theta} (w_{T+n\tau+\theta,s}^* - a(s)) \, ds \right| < +\infty.$$

For the first term we have

$$\sum_{n=1}^{+\infty} \int_{(n-1)\tau}^{\infty} a(s) \, ds \leq \frac{1}{\tau} \int_{0}^{+\infty} sa(s) \, ds < +\infty$$

by condition (i5). The finiteness of the second term follows directly from Lemma 6.

Thus we proved that $\lim_{n \to +\infty} Z(T + n\tau) > 0$, which immediately implies that $\lim_{t \to +\infty} H(t) > 0$, as needed.
5. THE MONOTONIC CASE: PROOF OF THEOREM 3

First note that \(\gamma \leq 0 \) follows from the assumption that \(g \) is decreasing. We consider the integral equation

\[
g(x) = \int_0^x g(x-u)a(u) \, du + \int_0^x g(x-u) \frac{b(u)}{x+d} \, du \\
+ \int_0^x g(x-u)c_{x,u} \, du + r(x) \
\]

(24)

In the following we define the Laplace transform of an integrable function \(f \) as

\[
F(s) = \lim_{y \to +\infty} \int_0^y e^{-sx} f(x) \, dx
\]

for \(s \in \mathbb{C} \), provided the limit exists and it is finite.

Denote the Laplace transforms of functions \(g, a, b, r \) by \(G, A, B, R \), respectively. These Laplace transforms are well defined and holomorphic on the half-plane \(\mathbb{H} = \{ s \in \mathbb{C} : \text{Re} \, s > 0 \} \); this follows from the conditions on \(a, b, r \) and Theorem 2. Moreover, \(A, B, \) and \(R \) are also holomorphic in a neighbourhood of the origin. Let \(f \) be either of the functions above, then we have

\[
F'(s) = -\int_0^{+\infty} e^{-sx} xf(x) \, dx, \quad s \in \mathbb{H}.
\]

Multiplying both sides of equation (24) by \((x + d)e^{-sx}\), then integrating, and using the well known properties of the Laplace transform we obtain that

\[
-G' + d \cdot G = -[G(s)A(s)]' \\
+ d \cdot G(s)A(s) + G(s)B(s) + C(s) - R'(s) + d \cdot R(s)
\]

for \(s \in \mathbb{H} \), where

\[
C(s) = \int_0^{+\infty} e^{-sx}(x+d) \int_0^x g(x-u)c_{x,u} \, du \, dx.
\]

This is finite and holomorphic in a neighbourhood of 0 by condition (i6) and Theorem 2.

After rearranging we have

\[
G'(s) = G(s) \left[d - \frac{B(s) - A'(s)}{1 - A(s)} \right] + \frac{R'(s) - d \cdot R(s) - C(s)}{1 - A(s)}.
\]

This is a first-order inhomogeneous linear differential equation for \(G \). Restricted to the set of positive real numbers we know that the solution is unique with any condition of type \(G(s_0) = t_0 \), and there is an explicit formula for it. Introducing the notations

\[
L(s) = d - \frac{B(s) - A'(s)}{1 - A(s)}, \quad R^*(s) = -\frac{R'(s) - d \cdot R(s) - C(s)}{1 - A(s)},
\]
all solutions of the differential equation can be obtained in the form

\[G(s) = \exp \left(-\int_{s}^{1} L(t) \, dt \right) \left[C_0 + \int_{s}^{1} R^*(t) \exp \left(\int_{t}^{1} L(u) \, du \right) \, dt \right] \]

for \(s > 0 \), with an appropriate constant \(C_0 \).

From the results of Theorem 2 it follows that \(G(s) \to 0 \) as \(s \) goes to infinity on the real line. On the other hand, \(L(t) \to d > 0 \) as \(t \to +\infty \), thus the first exponential tends to infinity as \(s \to +\infty \). Hence there can exist at most one \(C_0 \) for which equation (25) is satisfied. Conditions (i5) and (i6) imply that \(R^*(t) \leq C_1/t \) for some \(C_1 \); in addition, \(L(t) \leq C_2d \) also holds for \(t > 1/2 \). Therefore we have

\[\int_{s}^{+\infty} R^*(t) \exp \left(\int_{t}^{s} L(u) \, du \right) \, dt \leq \int_{s}^{+\infty} \frac{C_1}{t} \exp(C_2d(s-t)) \, dt \leq \frac{C_3}{s} \]

with some constant \(C_3 \), if \(s > 1/2 \).

By this, setting

\[C_0 = \int_{1}^{+\infty} R^*(t) \exp \left(\int_{t}^{1} L(u) \, du \right) \, dt, \]

which is finite, in (25) we get

\[G(s) = \int_{s}^{+\infty} R^*(t) \exp \left(\int_{t}^{s} L(u) \, du \right) \, dt, \]

for \(s > 0 \), and this \(G(s) \to 0 \) as \(s \to +\infty \) on the real line. Hence this is the Laplace transform of \(g \) on the set of positive numbers.

Since \(G(s) \) is holomorphic on the half-plane \(\mathbb{H} \), it is the unique extension of the solution given above. The right-hand side of (26) is well-defined on \(\mathbb{H} \), giving a holomorphic function on \(\mathbb{H} \), which extends \(G \) from the set of positive real numbers to \(\mathbb{H} \). Thus we have that the Laplace transform of \(g \) is given by (26) on the whole half-plane \(\mathbb{H} \).

Now we examine the behaviour of \(G \) around zero. In what follows \(h_1, h_2, \ldots \) will always denote functions that are holomorphic in a neighbourhood of the origin. Let us start with \(L \). Using the Taylor expansion of the exponential function we get

\[A(s) = 1 - s \int_{0}^{+\infty} ta(t) \, dt + \frac{s^2}{2} \int_{0}^{+\infty} t^2 a(t) \, dt + \ldots, \quad s \in \mathbb{C}, \]

which implies that

\[L(s) = d - \frac{B(s) - A'(s)}{1 - A(s)} = \frac{B(0) - A'(0)}{s \int_{0}^{+\infty} ta(t) \, dt} + h_1(s) = -\frac{\gamma + 1}{s} + h_1(s). \]

Furthermore we have

\[\int_{s}^{1} L(t) \, dt = (\gamma + 1) \log s + h_2(s), \quad s \in \mathbb{H}. \]
Here we chose an arbitrary holomorphic branch of the logarithm on the right
half-plane \mathbb{H}. Once the logarithm is defined on \mathbb{H}, then $s^{\gamma+1}$ and $s^{-(\gamma+1)}$ are also
meaningful there. Thus we obtain that

$$\exp\left(\int_t^s L(u) \, du\right) = \left(\frac{t}{s}\right)^{\gamma+1} \exp\left(h_2(t) - h_2(s)\right), \quad s, t \in \mathbb{H}. \quad (28)$$

One can similarly derive that $sR^*(s)$ is holomorphic in a neighbourhood of
0, hence

$$R^*(s) \exp\left(h_2(s)\right) = \frac{h_3(s)}{s}, \quad s \in \mathbb{H}. \quad (29)$$

Finally, from equation (26) we obtain that

$$G(s) = \int_s^{+\infty} R^*(t) \exp\left(\int_t^s L(u) \, du\right) \, dt = s^{-(\gamma+1)} \exp\left(-h_2(s)\right) \int_s^{+\infty} t^{\gamma+1} R^*(t) \exp\left(h_2(t)\right) \, dt, \quad s \in \mathbb{H}. \quad (30)$$

Suppose first that γ is not a negative integer, and consider only positive values
of s. Then, with a sufficiently small positive ε, by (29) we have

$$\int_s^{+\infty} t^{\gamma+1} R^*(t) \exp\left(h_2(t)\right) \, dt = C_4 + \int_s^{\varepsilon} t^{\gamma+1} R^*(t) \exp\left(h_2(t)\right) \, dt$$

$$= C_4 + \int_s^{\varepsilon} t^{\gamma} h_3(t) \, dt = C_4 + s^{\gamma+1} h_4(s)$$

for $s \in (0, \varepsilon)$, where C_4 is a constant. Hence

$$G(s) = \exp\left(-h_2(s)\right) \left(C_4 s^{-(\gamma+1)} + h_4(s)\right) = h_5(s) + s^{-(\gamma+1)} h_6(s),$$

from which the kth derivative of G can be written in the form

$$G^{(k)}(s) = h_7(s) + s^{-(\gamma+1+k)} h_8(s).$$

Choose a positive integer k such that $0 < \gamma + k + 1$, then it follows that

$$s^{\gamma+k+1} G^{(k)}(s) \to K$$

as $s \to +0$, with some finite constant K.

Before going further, we prove a similar relation for $\gamma = -k$, where k is a
positive integer. In this case we have

$$\int_s^{+\infty} t^{\gamma+1} R^*(t) \exp\left(h_2(t)\right) \, dt = C_4 + \int_s^{\varepsilon} t^{\gamma+1} R^*(t) \exp\left(h_2(t)\right) \, dt$$

$$= C_4 + \int_s^{\varepsilon} t^{\gamma} h_3(t) \, dt = C_4 + s^{\gamma+1} h_4(s) + C_5 \log s,$$
where C_4 and C_5 are constants, and $s \in (0, \varepsilon)$. The term $\log s$ comes from the $(k-1)$st term of the expansion of the holomorphic function h_3. Then
\[
G(s) = \exp\left(-h_2(s)\right) (h_9(s) + C_5 s^{k-1} \log s) = h_{10}(s) + s^{k-1} h_{11}(s) \log s,
\]
consequently, $G^{(k-1)}(s) = h_{12}(s) + h_{13}(s) \log s$, and finally
\[
G^{(k)}(s) = \frac{h_{14}(s)}{s} + h_{15}(s) \log s, \quad s \in (0, \varepsilon).
\]
This implies that
\[
s G^{(k)}(s) \to K
\]
as $s \to +0$, with some finite constant K. Thus, (31) remains valid for negative integer values of γ.

Now we apply Karamata’s Tauberian theorem (see e.g. [10, Theorem XIII.5.2] or [4, Theorem 1.7.1]). We will use the following notation. Functions v and w are asymptotically equal to each other, that is, $v(x) \sim w(x)$ as $x \to 0$ (or $+\infty$) if v/w tends to 1 as $x \to 0$ (or $+\infty$). $v(x) \sim 0 \cdot w(x)$ means that v/w tends to 0 as $x \to 0$ (or $+\infty$). The latter is the same as $v = o(w)$.

Theorem A. Let U be a non-decreasing right-continuous function on $(0, +\infty)$ such that its Laplace transform $\omega(s) = \int_0^{+\infty} e^{-sx} dU(x)$ exists for $s > 0$. If ℓ is slowly varying at infinity, $0 \leq \rho < +\infty$, and $0 \leq c < +\infty$, then each of the relations
\[
\omega(s) \sim cs^{-\rho} \left(\frac{1}{s}\right) \text{ as } s \to +0 \quad \text{and} \quad U(t) \sim c \cdot \frac{1}{\Gamma(\rho + 1)} t^\rho \ell(t) \text{ as } t \to +\infty
\]
implies the other.

We apply this theorem to $U(x) = \int_0^x g(u) u^k du$, for which ω is constant times $G^{(k)}$. From equation (31) we get
\[
\int_0^x g(u) u^k du \sim A_k x^{\gamma+k+1}
\]
as $x \to +\infty$, for some $A_k \geq 0$. Note that the constant A_k depends on k.

In order to finish the proof of Theorem 3 we need another Tauberian type theorem, giving the asymptotics of $g(u)u^k$ from the asymptotics of its integral function. We will use the monotonicity of g at this point.

We say that a function f is slowly oscillating if for any $\varepsilon > 0$ there exists $\delta > 0$ such that $f(u) < f(x)(1 + \varepsilon)$ holds for all $x < u < x(1 + \delta)$ (see e.g. [13, Section 6.2], [4, Section 1.7.6], [15, Section 17]). Using that g is a non-increasing, nonnegative function, it is easy to see that $g(x) x^k$ is slowly oscillating provided k is a positive integer. Indeed, for all $x < u < x(1 + \delta)$ we have
\[
g(u) u^k \leq g(x) x^k (1 + \delta)^k.
\]
Hence given $\varepsilon > 0$, any $\delta > 0$ such that $(1 + \delta)^k < 1 + \varepsilon$ would satisfy the condition.

Slow oscillation is generally a sufficient condition of Tauberian type theorems. For example, Theorem 17.2. of [15] states the following.
Theorem B. Let f be defined on an interval $(a, +\infty)$, and suppose that $f(x) \sim Ax^\alpha$ as $x \to +\infty$ with some real numbers α, A. If f is m times differentiable and
\[
\lim \inf \frac{f^{(m)}(y) - f^{(m)}(x)}{x^{\alpha - m}} \geq 0
\]
as $x \to +\infty$ and $1 < y/x \to 1$, then
\[
f^{(j)}(x) \sim A\alpha(\alpha - 1)\cdots(\alpha - j + 1) x^{\alpha - j}
\]
as $x \to +\infty$, for $1 \leq j \leq m$.

Based on equation (32), we can apply this theorem with
\[
f(x) = -\int_0^x g(u)u^k du, \quad m = j = 1, \quad \text{and} \quad \alpha = \gamma + k + 1.
\]
Then we get that $g(x)x^{-\gamma}$ is convergent as $x \to +\infty$.

From Theorem 2 it follows that the limit of $g(x)x^{-\gamma}$ is positive and finite, which is just our Theorem 3.

Remark 5. Since the Laplace transform method usually gives only local results in the discrete case, and we needed global results there, it is reasonable to use classic renewal techniques. On the other hand, those methods rely on convolution in the continuous case, which was not useful for our integral equation.

Acknowledgements. The authors are indebted to Gábor Halász for his invaluable help with Laplace transforms. The European Union and the European Social Fund have provided financial support to the project under the grant agreement no. TAMOP 4.2.1./B-09/KMR-2010-0003. Partially supported by the Hungarian Scientific Research Fund – OTKA K 108615.

REFERENCES

