HIGHER ORDER BELL POLYNOMIALS AND THE RELEVANT INTEGER SEQUENCES

Pierpaolo Natalini* and Paolo Emilio Ricci

Dedicated to the Memory of Dr. Massimo Marchetti
an unforgettable dear friend

The recurrence relation for the coefficients of higher order Bell polynomials, i.e. of the Bell polynomials relevant to nth derivative of a multiple composite function, is proved. Therefore, starting from this recurrence relation and by using the computer algebra program Mathematica®, some tables for complete higher order Bell polynomials and the relevant numbers are derived.

1. INTRODUCTION

The Bell polynomials [3] are a mathematical tool for representing the nth derivative of a composite function. They are strictly related to partitions [1], [2], [21].

Several applications of the classical Bell polynomials have been considered in [5], [7], [9] (in connection with [22]), [13], [14].

Some generalized forms of Bell polynomials appeared in literature, see e.g. [11], [20]. Further generalizations can be found in [15], [16], and for the multidimensional case in [6], [19].

In particular, in [15], the higher order Bell polynomials and their main properties were introduced and recently, in [18], a recursion formula for the polynomial coefficients $A_{n,k}$ of the classical Bell polynomials was derived. This last result allows to compute the complete Bell polynomials B_n and the relevant Bell numbers b_n, for every integer n.

In this article, after recalling this theory, and by using a more compact notation borrowed from [6], we prove the recurrence relation formula for the polynomial

*Corresponding author. Pierpaolo Natalini
2010 Mathematics Subject Classification. 05A10, 26A06, 11P81.
Keywords and Phrases. Bell polynomials, Higher order Bell polynomials and numbers, Differentiation of composite functions, Combinatorial analysis, Partitions.
coefficients $A_{n,k}^{[r]}$ of the rth order Bell polynomials, generalizing in this way the result obtained in [18]. Therefore, by using this formula and by means of the computer algebra program Mathematica, we can obtain, for all integer n, tables of every order complete Bell polynomials $B_{n}^{[r]}$ and the relevant Bell numbers $b_{n}^{[r]}$. Here, as examples, we consider the cases $r = 2, 3, 4, 5$.

It is worth to note that the higher order Bell numbers appeared in literature as the McLaurin coefficients of a particular nested exponential function, while in our approach they assume a more general meaning. To our knowledge, tables of higher order Bell polynomials were never considered at all.

2. RECALLING THE BELL POLYNOMIALS

We recall that the Bell polynomials are a classical mathematical tool for representing the n^{th} derivative of a composite function. In fact by considering the composite function $\Phi(t) := f(g(t))$ of functions $x = g(t)$ and $y = f(x)$ defined in suitable intervals of the real axis and n times differentiable with respect to the relevant independent variables and by using the following notations:

$\Phi_{h} := D_{t}^{h} \Phi(t), \quad f_{h} := D_{x}^{h} f(x)|_{x=g(t)}, \quad g_{h} := D_{t}^{h} g(t), \quad (1)$

and

$([f,g]_{n}) := (f_{1}, g_{1}; f_{2}, g_{2}; \ldots; f_{n}, g_{n}), \quad (2)$

they are defined as follows

$Y_{n}([f,g]_{n}) := \Phi_{n}. \quad (3)$

For example one has:

$Y_{1}([f,g]_{1}) = f_{1}g_{1},$
$Y_{2}([f,g]_{2}) = f_{1}g_{2} + f_{2}g_{1}^{2},$
$Y_{3}([f,g]_{3}) = f_{1}g_{3} + f_{2}(3g_{2}g_{1}) + f_{3}g_{1}^{3}.$

Further examples can be found in [21, p. 49].

Inductively, using the notation

$[g]_{n} := (g_{1}, g_{2}, \ldots, g_{n}),$

we can write:

$Y_{n}([f,g]_{n}) = \sum_{k=1}^{n} A_{n,k}([g]_{n}) f_{k}, \quad (4)$

where the coefficient $A_{n,k}$, for any $k = 1, \ldots, n$, is a polynomial in $g_{1}, g_{2}, \ldots, g_{n}$, homogeneous of degree k and isobaric of weight n (i.e. it is a linear combination of monomials $g_{1}^{k_{1}}g_{2}^{k_{2}}\cdots g_{n}^{k_{n}}$ whose weight is constantly given by $k_{1} + 2k_{2} + \ldots + nk_{n} = n$).

For them the following result holds true:
Proposition 1. The Bell polynomials satisfy the recurrence relation:

\[
\begin{cases}
Y_0 ([f, g]_0) := f_1 \\
Y_{n+1} ([f, g]_{n+1}) = \sum_{k=0}^{n} \binom{n}{k} Y_{n-k} ([f_1, g]_{n-k}) \ g_{k+1},
\end{cases}
\]

where

\([f_1, g]_{n-k} := (f_2, g_1; f_3, g_2; \ldots; f_{n-k+1}, g_{n-k}).\]

An explicit expression for the Bell polynomials is also given by the Faà di Bruno formula \([10]\):

\[
\Phi_n = Y_n ([f, g]_n) = \sum_{\pi(n)} \frac{n!}{j_1! j_2! \ldots j_n!} \ f_{j_1} \frac{[g_1]^{j_1}}{1!} \ [g_2]^{j_2} \ [g_3]^{j_3} \ \cdots \ [g_n]^{j_n},
\]

where the sum runs over all partitions \(\pi(n)\) of the integer \(n\) (i.e. \(n = j_1 + 2j_2 + \cdots + nj_n\)), \(j_h\) denotes the number of parts of size \(h\) and \(j = j_1 + j_2 + \cdots + j_n\) denotes the number of parts of the considered partition. A proof of the Faà di Bruno formula can be found in \([21]\). In \([23]\) the proof is based on the umbral calculus (see \([24]\) and the references therein).

The following result gives us a recursion formula for the coefficients \(A_{n,k}\) which appear in the Bell formula \((4)\) and are known as partial Bell polynomials. It was proved in \([18]\), but we will observe that it derives as a particular case of Theorem 7 proved here in Section 3.

Theorem 2. We have, \(\forall n:\)

\[
A_{n+1,1} = g_{n+1}, \quad A_{n+1,n+1} = g_1^{n+1}.
\]

Furthermore, \(\forall k = 1, 2, \ldots, n - 1\), the \(A_{n,k}\) coefficients can be computed by the recurrence relation

\[
A_{n+1,k+1} ([g]_{n+1}) = \sum_{h=0}^{n-k} \binom{n}{h} A_{n-h,k} ([g]_{n-h}) \ g_{n+1}.
\]

The complete Bell polynomials, considered in literature, are defined by

\[
B_n ([g]_n) = Y_n (1, g_1; 1, g_2; \ldots; 1, g_n) = \sum_{k=1}^{n} A_{n,k} ([g]_n),
\]

and the Bell numbers by

\[
b_n = Y_n (1, 1; 1, 1; \ldots; 1, 1) = \sum_{k=1}^{n} A_{n,k} (1, 1, \ldots, 1).
\]
3. BELL POLYNOMIALS OF ORDER \(r \)

In [6] the following extension of the classical Bell polynomials was achieved. Consider \(\Phi(t) := f(\varphi^{(1)}(\varphi^{(2)}(\cdots(\varphi^{(r)}(t))))), \) i.e. the composition of functions \(x^{(r)} = \varphi^{(r)}(t), \ldots, x^{(2)} = \varphi^{(2)}(x^{(1)}), x^{(1)} = \varphi^{(1)}(x^{(2)}), y = f(x^{(1)}) \) defined in suitable intervals of the real axis, and suppose that the functions \(\varphi^{(r)}, \ldots, \varphi^{(2)}, \varphi^{(1)} \) are \(n \) times differentiable with respect to the relevant independent variables so that, by using the chain rule, \(\Phi(t) \) can be differentiated \(n \) times with respect to \(t \).

We use the following notations:

\[
\Phi_h := D^h_t \Phi(t), \\
f_h := D^h_t f(x^{(1)} = \varphi^{(1)}(\cdots(\varphi^{(r)}(t)))), \\
(11) \varphi^{(1)}_h := D^h_{x(2)} \varphi^{(1)}(x^{(2)} = \varphi^{(2)}(\cdots(\varphi^{(r)}(t)))), \\
\ldots \ldots \ldots, \varphi^{(r)}_h := D^h_{x(1)} \varphi^{(r)}(t),
\]

and

\[
\left(f, \varphi^{(1)}, \ldots, \varphi^{(r)} \right)_n := (f_1, \varphi_1^{(1)}, \ldots, \varphi^{(r)}_1; \ldots; f_n, \varphi^{(1)}_n, \ldots, \varphi^{(r)}_n).
\]

Then the \(n^{th} \) derivative of the function \(\Phi \) allows us to define the (one-dimensional) Bell polynomials of order \(r \), \(Y^{[r]}_n \), as follows:

\[
(12) \quad Y^{[r]}_n \left([f, \varphi^{(1)}, \ldots, \varphi^{(r)}]_n \right) := \Phi_n.
\]

For \(r = 1 \) we obtain the ordinary Bell polynomials \(Y^{[1]}_n \left([f, \varphi^{(1)}]_n \right) = Y_n \left([f, \varphi^{(1)}]_n \right) \). Note that we are considering here the one-dimensional case, while in [6] even the multi-dimensional Bell polynomials were introduced.

The first polynomials have the following explicit expressions:

\[
(13) \quad Y^{[r]}_1 \left([f, \varphi^{(1)}, \ldots, \varphi^{(r)}]_1 \right) = f_1 \varphi^{(1)}_1 \cdots \varphi^{(r)}_1,
\]

\[
Y^{[r]}_2 \left([f, \varphi^{(1)}, \ldots, \varphi^{(r)}]_2 \right) = f_2 \left(\varphi^{(1)}_1 \cdots \varphi^{(r)}_1 \right)^2 + f_1 \varphi^{(1)}_2 \left(\varphi^{(2)}_1 \cdots \varphi^{(r)}_1 \right)^2
\]

\[
+ f_1 \varphi^{(1)}_1 \varphi^{(2)}_2 \left(\varphi^{(3)}_1 \cdots \varphi^{(r)}_1 \right)^2 + f_1 \varphi^{(1)}_1 \varphi^{(2)}_1 \varphi^{(3)}_2 \cdots \varphi^{(r-1)}_1 \varphi^{(r)}_2.
\]

In general, we have

\[
(14) \quad Y^{[r]}_n ([f, \varphi^{(1)}, \ldots, \varphi^{(r)}]_n) = \sum_{k=1}^{n} A^{[r]}_{n,k} ([\varphi^{(1)}, \ldots, \varphi^{(r)}]_n) f_k.
\]

Some useful properties, proved in [15], satisfied by the polynomials \(Y^{[r]}_n \) are the following:
Theorem 3. For every integer n, the polynomials Y_n^r are expressed in terms of the Bell polynomials of lower order, by means of the following equation:

\[
Y_n^r \left(\left[f, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_n \right) = Y_n \left(\left[f, Y_n^{r-1} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_n \right) \right]_n \right),
\]

where

\[
\left(\left[f, Y_n^{r-1} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_n \right) \right]_n \right) := \left(f_1, Y_1^{r-1} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_1 \right) \right); \ldots; f_n, Y_n^{r-1} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_n \right).
\]

Theorem 4. The following recurrence relation for the Bell polynomials Y_n^r holds true:

\[
\begin{cases}
Y_0^r \left(\left[f, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_0 \right) = f_1 \\
Y_n^r \left(\left[f, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) = \sum_{k=0}^{n} \binom{n}{k} \times Y_{n-k} \left(\left[f_1, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n-k} \right) Y_{k+1}^{r-1} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{k+1} \right),
\end{cases}
\]

where

\[
\left(\left[f_1, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n-k} \right) := \left(f_2, \varphi^{(1)}_1, \ldots, \varphi^{(r)}_1; \ldots; f_n-k+1, \varphi^{(1)}_{n-k}, \ldots, \varphi^{(r)}_{n-k} \right).
\]

Theorem 5. The generalized Faà di Bruno formula holds true:

\[
\begin{align*}
Y_n^r \left(\left[f, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_n \right) &= \sum_{\pi(n)} \frac{n!}{j_1!j_2! \ldots j_n!} \cdot f_1 \left[Y_1^{r-1} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_1 \right) \right]^{j_1} \\
&\quad \times \frac{Y_2^{r-1} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_2 \right)}{2!}^{j_2} \ldots \left[Y_n^{r-1} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_n \right) \right]^{j_n}.
\end{align*}
\]

By putting, for every integer s ($1 \leq s \leq r-1$),

\[
\varphi^{(s+1)}(\varphi^{(s+2)}(\ldots(\varphi^{(r)}(t))\ldots)) =: g(t), \quad f(\varphi^{(1)}(\ldots(\varphi^{(s)}(x))\ldots)) =: f(x)
\]

where $x = g(t)$, the composite function $\Phi(t) := f(\varphi^{(1)}(\cdots(\varphi^{(r)}(t))\cdots))$, can be written as follows

\[
\Phi(t) = f(g(t)).
\]

Therefore the following result holds true:
Theorem 6. For every integer \(n \), the polynomials \(Y_n^{[r]} \) are expressed in terms of the Bell polynomials of lower order, by means of the following equation:

\[
Y_n^{[r]} ([f, \varphi^{(1)}, \ldots, \varphi^{(r)}])_n = Y_n \left(Y^{[s]} ([f, \varphi^{(1)}, \ldots, \varphi^{(s)}]), Y^{[r-s-1]} ([\varphi^{(s+1)}, \ldots, \varphi^{(r)}])_n \right).
\]

(18)

The complete Bell polynomials of order \(r \), \(B_n^{[r]} \), are defined by the equation:

\[
B_n^{[r]} ([\varphi^{(1)}, \ldots, \varphi^{(r)}])_n = Y_n^{[r]} (1, \varphi_1^{(1)}, \ldots, \varphi_1^{(r)}; \ldots; 1, \varphi_n^{(1)}, \ldots, \varphi_n^{(r)})
\]

\[
= \sum_{k=1}^{n} A_{n,k}^{[r]} \left([\varphi^{(1)}, \ldots, \varphi^{(r)}]_n \right),
\]

and the \(r \)th order Bell numbers by

\[
b_n^{[r]} = Y_n^{[r]} (1, 1, 1; \ldots; 1, 1, 1) = \sum_{k=1}^{n} A_{n,k}^{[r]} (1; \ldots; 1, 1).
\]

Now, in order to derive tables for complete higher order Bell polynomials \(B_n^{[r]} \) and the relevant higher order Bell numbers \(b_n^{[r]} \), we generalize the result given in Theorem 2, by means of the following theorem

Theorem 7. We have, \(\forall n \)

\[
A_{n+1,1}^{[r]} = Y_{n+1}^{[r-1]} \left([\varphi^{(1)}, \ldots, \varphi^{(r)}]_{n+1} \right),
\]

(19)

\[
A_{n+1,n+1}^{[r]} = \left(Y_{n+1}^{[r-1]} ([\varphi^{(1)}, \ldots, \varphi^{(r)}])_1 \right)^{n+1} = \left(\varphi_1^{(1)} \ldots \varphi_1^{(r)} \right)^{n+1}.
\]

Furthermore, \(\forall k = 1, 2, \ldots, n-1 \), the \(r \)-th order partial Bell polynomials \(A_{n,k}^{[r]} \) satisfy the recursion:

\[
A_{n+1,k+1}^{[r]} \left([\varphi^{(1)}, \ldots, \varphi^{(r)}]_{n+1} \right) = \sum_{h=0}^{n-k} \binom{n}{h} A_{n-h,k}^{[r]} \left([\varphi^{(1)}, \ldots, \varphi^{(r)}]_{n-h} \right)
\]

\[
\times Y_{h+1}^{[r-1]} \left([\varphi^{(1)}, \ldots, \varphi^{(r)}]_{h+1} \right).
\]

(20)
Proof. According to equations (14) and (4), using Theorem 3, we can write

\[Y_{n+1}^{[r]} \left(\left[f, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) = \sum_{k=1}^{n+1} A_{n+1,k}^{[r]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) f_k \]

\[= Y_{n+1} \left(f_1, Y_{n+1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_1 \right); \ldots; f_{n+1}, Y_{n+1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) \right) \]

\[= \sum_{k=1}^{n+1} A_{n+1,k} \left(Y_{1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_1 \right); \ldots; Y_{n+1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) \right) f_k, \]

so that we find the following relations between the classical polynomial coefficients and the \(r \)-th order ones:

\[A_{n+1,k}^{[r]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) \]

\[= A_{n+1,k} \left(Y_{1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_1 \right); \ldots; Y_{n+1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) \right). \]

Equations (19) can be obtained from relations (21), for \(k = 1 \) and \(k = n + 1 \), as a direct consequence of the definition of the ordinary coefficient \(A_{n+1,k} \) given in (4). In order to prove equation (20), note that, taking into account the first relation in (19), we can write the equation (14) in the form

\[Y_{n+1}^{[r]} \left(\left[f, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) = \sum_{k=0}^{n} A_{n+1,k+1}^{[r]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) f_{k+1} \]

\[= A_{n+1,1}^{[r]} f_1 + \sum_{k=1}^{n} A_{n+1,k+1}^{[r]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) f_{k+1} \]

\[= Y_{n+1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) f_1 + \sum_{k=1}^{n} A_{n+1,k+1}^{[r]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) f_{k+1}. \]

Furthermore, recalling equation (16)_1, the equation (16)_2 becomes
\[\begin{align*}
Y_{r+1}^{[r]} \left(\left[f, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) &= \sum_{h=0}^{n} \binom{n}{h} Y_{n-h}^{[r]} \left(\left[f, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n-h} \right) Y_{h+1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{h+1} \right) \\
&= f_1 Y_{n+1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) \\
&+ \sum_{h=0}^{n-1} \binom{n}{h} Y_{n-h}^{[r]} \left(\left[f, \varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n-h} \right) Y_{h+1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{h+1} \right)
\end{align*} \]

so that, neglecting the first term in both the above sums, we find:

\[\begin{align*}
\sum_{k=1}^{n} A_{n+1,k+1}^{[r]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n+1} \right) f_{k+1} &= \sum_{h=0}^{n-1} \binom{n}{h} \left(\sum_{\ell=1}^{n-h} A_{n-h,\ell}^{[r]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n-h} \right) f_{\ell+1} \right) Y_{h+1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{h+1} \right) \\
&= \sum_{\ell=1}^{n} \left(\sum_{h=0}^{n-\ell} \binom{n}{h} A_{n-h,\ell}^{[r]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{n-h} \right) Y_{h+1}^{[r-1]} \left(\left[\varphi^{(1)}, \ldots, \varphi^{(r)} \right]_{h+1} \right) \right) f_{\ell+1}.
\end{align*} \]

Therefore, changing \(\ell \) into \(k \) in the last formula and equating the coefficients of \(f_{k+1} \), the equation (20) follows.

4. TABLES OF COMPLETE HIGHER ORDER BELL POLYNOMIALS, FOR \(r = 2, 3, 4, 5 \)

By using the recurrence relation (19)-(20) and by means of the computer algebra program Mathematica® we can construct the complete Bell polynomials of every order. We will limit ourselves to present here the very first of them. Putting, for shortness: \(x = \varphi^{(1)} \), \(y = \varphi^{(2)} \), \(z = \varphi^{(3)} \), \(u = \varphi^{(4)} \), \(v = \varphi^{(5)} \), and denoting by indices the order of derivatives, we have found:
Second order Bell polynomials:

\[B_2^3(x, y) = x_1y_1; \]
\[B_2^3(x, y) = x_1^2y_1^2 + x_2y_1^2 + x_1y_2; \]
\[B_3^3(x, y, z) = x_1^3y_1^3 + 3x_1x_2y_1^3 + x_1y_1^3 + 3x_1^2y_1y_2 + 3x_2y_1y_2 + x_1y_3; \]
\[B_4^4(x, y, z) = x_1^4y_1^4 + 6x_1^3x_2y_1^4 + 3x_1^2x_2^2y_1^4 + 4x_1x_2x_3y_1^4 + 4x_4y_1^4 + 6x_1^3y_1^2y_2 + 18x_1^2x_2y_1^2y_2 + 6x_1y_1^2y_2 + 3x_2y_1^2y_2 + 3x_2y_2^2 + 4x_1^2y_1^2y_3 + 4x_2y_1^2y_3 + x_1y_4; \]
\[B_5^5(x, y, z) = x_1^5y_1^5 + 10x_1^4x_2y_1^5 + 15x_1^3x_2^2y_1^5 + 10x_1^2x_2^3y_1^5 + 5x_1^3y_1y_2^5 \]
\(+ 5x_1^2x_2y_1y_2^5 + 60x_1^2x_2^2y_1y_2^5 + 30x_1^2y_1^2y_2^2y_4 + 20x_1y_1y_2y_3y_4 + 10x_1^2y_1^2y_3^2 + 10x_1y_1^2y_2y_3 + 10x_1y_1y_2y_4 + 10x_1^2y_1^2y_2 + 10x_2y_1y_2^2y_3 + 5x_1^2y_1^2y_4 + 5x_2y_1y_3y_4 + x_1y_5. \]

Third order Bell polynomials:

\[B_3^3(x, y, z) = x_1^3y_1^3 + 3x_1^2y_1y_2 + 3x_1y_1^2 + 3x_1^3 + 3x_1^2y_2 + 3x_1y_1y_3 + 3x_1^2y_3 + 3x_1y_2^2 + 3x_1y_1^3; \]
\[B_4^4(x, y, z) = x_1^4y_1^4 + 3x_1^3y_1y_2 + 4x_1^2y_1y_2 + 4x_1y_1^2 + 4x_1y_2^2 + 4x_1y_1^3 + 3x_1^2y_1 + 3x_1y_1y_3 + 3x_1^2y_2 + 3x_1y_2^2 + 3x_1y_3^2; \]
\[B_5^5(x, y, z) = x_1^5y_1^5 + 3x_1^4y_1y_2 + 6x_1^3y_1y_2 + 6x_1^2y_1y_2 + 6x_1y_1y_2 + 6y_1^5 + 30x_1^3y_1y_3 + 30x_1^2y_1y_3 + 30y_1^3y_2^2 + 30y_1^2y_2^2 + 30y_1y_2^2 + 3y_2^5 + 15x_1^4y_2 + 45x_1^3y_2 + 15x_1^2y_2 + 15x_1y_2 + 10x_2y_2 + 10x_1^3y_3 + 10x_1^2y_3 + 10x_1y_3 + 10y_3^2 + 10x_1^2y_4 + 10x_2y_4 + 10x_1y_4 + 5x_1y_5; \]

Fourth order Bell polynomials:

\[B_4^4(x, y, z, u) = u_1^4z_1y_1^4 + 3u_1^3z_2y_1^4 + 4u_1^2u_2z_2y_1^4 + 4u_1u_3z_2y_1^4 + 6u_2^2z_2y_1^4; \]
\[B_5^5(x, y, z, u) = u_1^5z_1y_1^5 + 4u_1^4z_2y_1^5 + 4u_1^3u_2z_2y_1^5 + 4u_1^2u_3z_2y_1^5 + 4u_1u_4z_2y_1^5 + 4u_4^2z_2y_1^5 + 10u_1^3y_1^2 + 10u_1^2u_2y_1^2 + 10u_1u_3y_1^2 + 10u_4y_1^2 + 10y_1^3 + 10u_1^2z_2 + 10u_2^2z_2 + 10u_1u_2z_2 + 10u_1z_2^2 + 10u_2z_2^2 + 10u_4z_2^2 + 10z_2^3; \]
Fifth order Bell polynomials:

\[B_5^5 \left((x, y, z, u, v) \right) = v_1 u_1 z_1 y_1 x_1; \]

\[B_2^2 \left((x, y, z, u, v) \right) = v_2 u_1 z_1 y_1 x_1 + v_1^2 u_2 z_1 y_1 x_1 + v_1^2 u_1 z_2 y_1 x_1 + v_1^2 u_1 z_1 y_2 x_1 + v_1^2 u_1 z_1 y_1 x_2; \]

\[B_3^3 \left((x, y, z, u, v) \right) = v_3 u_1 z_1 y_1 x_1 + 3 v_1 v_2 u_2 z_1 y_1 x_1 + v_1^3 u_3 z_1 y_1 x_1 + 3 v_1 v_2 u_2 z_1 y_1 x_1 + v_1^3 u_3 z_1 y_2 x_1 + v_1^3 u_3 z_2 y_1 x_1 + 3 v_1 v_2 u_2 z_1 y_2 x_1 + v_1^3 u_3 z_2 y_2 x_1 + v_1^3 u_3 z_3 y_1 x_1 + v_1^3 u_3 z_3 y_2 x_1 + v_1^3 u_3 z_3 y_3 x_1 \]

\[B_4^4 \left((x, y, z, u, v) \right) = v_4 u_1 z_1 y_1 x_1 + 3 v_1 v_3 u_2 z_1 y_1 x_1 + 4 v_1 v_3 u_2 z_2 y_1 x_1 + 4 v_1 v_3 u_3 z_1 y_1 x_1 + 4 v_1 v_3 u_3 z_2 y_1 x_1 + 4 v_1 v_3 u_3 z_3 y_1 x_1 \]

\[+ 18 v_1^2 v_2 u_1 z_1 y_1 x_1 + 3 v_1^2 u_2 z_1 y_1 x_1 + 4 v_1^2 u_3 z_1 y_2 x_1 + 4 v_1^2 u_3 z_3 y_1 x_1 + 4 v_1^2 u_3 z_3 y_2 x_1 + 4 v_1^2 u_3 z_3 y_3 x_1 \]

5. HIGHER ORDER BELL NUMBERS, FOR \(r = 2, 3, 4, 5 \)

It is worth to note that the sequences of higher order Bell numbers which will be presented here appear in the Encyclopedia of Integer Sequences [25] under the # A144150, arising from a problem of Combinatorial Analysis and even as the McLaurin coefficients of the functions \([4], [12] \)

\[\exp(\exp(\exp(x) - 1) - 1), \]
\[\exp(\exp(\exp(x) - 1) - 1), \]
\[\exp(\exp(\exp(x) - 1) - 1) - 1), \]
\[\exp(\exp(\exp(\exp(x) - 1) - 1) - 1) - 1), \]

for the cases \(r = 2, r = 3, r = 4, r = 5, \) respectively, and so on for the subsequent values of \(r. \) Whereas in our approach they assume a more general meaning, as they are independent of the functions \(f, \varphi(1), \ldots, \varphi(r) \).
According to the above reference we have found, using the recurrence relation (19)-(20) and by means of the computer algebra program Mathematica®, the following sequences for the higher order Bell numbers $b_{[2]}^n$, $b_{[3]}^n$, $b_{[4]}^n$, $b_{[5]}^n$, $(n = 1, 2, \ldots, 21)$:

<table>
<thead>
<tr>
<th>n</th>
<th>$b_{[2]}^n$</th>
<th>$b_{[3]}^n$</th>
<th>$b_{[4]}^n$</th>
<th>$b_{[5]}^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>154</td>
<td>1304</td>
<td>1304</td>
</tr>
<tr>
<td>4</td>
<td>2471</td>
<td>12915</td>
<td>48664218965021</td>
<td>48664218965021</td>
</tr>
<tr>
<td>5</td>
<td>19302</td>
<td>146115</td>
<td>5840199914957</td>
<td>5840199914957</td>
</tr>
<tr>
<td>6</td>
<td>167894</td>
<td>1855570</td>
<td>122629173423</td>
<td>122629173423</td>
</tr>
<tr>
<td>7</td>
<td>1606137</td>
<td>26097835</td>
<td>335470737637</td>
<td>335470737637</td>
</tr>
<tr>
<td>8</td>
<td>1673779</td>
<td>402215465</td>
<td>48664218965021</td>
<td>48664218965021</td>
</tr>
<tr>
<td>9</td>
<td>188578402</td>
<td>6734414075</td>
<td>106789597109199</td>
<td>106789597109199</td>
</tr>
<tr>
<td>10</td>
<td>2276423485</td>
<td>121629173423</td>
<td>2355470737637</td>
<td>2355470737637</td>
</tr>
<tr>
<td>11</td>
<td>28967807524</td>
<td>2355470737637</td>
<td>48664218965021</td>
<td>48664218965021</td>
</tr>
<tr>
<td>12</td>
<td>402577243425</td>
<td>48664218965021</td>
<td>8151682185663225</td>
<td>8151682185663225</td>
</tr>
<tr>
<td>13</td>
<td>5840199914957</td>
<td>8151682185663225</td>
<td>162745024713265018</td>
<td>162745024713265018</td>
</tr>
<tr>
<td>14</td>
<td>89345001017415</td>
<td>162745024713265018</td>
<td>3169900294282180360</td>
<td>3169900294282180360</td>
</tr>
<tr>
<td>15</td>
<td>1343904211547895</td>
<td>3169900294282180360</td>
<td>6340070971804060720</td>
<td>6340070971804060720</td>
</tr>
<tr>
<td>16</td>
<td>2227076487779802</td>
<td>6340070971804060720</td>
<td>1468008599608172144</td>
<td>1468008599608172144</td>
</tr>
<tr>
<td>17</td>
<td>427187837301557598</td>
<td>1468008599608172144</td>
<td>3094083596376764976</td>
<td>3094083596376764976</td>
</tr>
<tr>
<td>18</td>
<td>7859930038606521508</td>
<td>3094083596376764976</td>
<td>65795138641163301256</td>
<td>65795138641163301256</td>
</tr>
<tr>
<td>19</td>
<td>150601795280158255827</td>
<td>65795138641163301256</td>
<td>132807277282326602512</td>
<td>132807277282326602512</td>
</tr>
<tr>
<td>20</td>
<td>3513694949111501770241</td>
<td>132807277282326602512</td>
<td>2765344545646532050242</td>
<td>2765344545646532050242</td>
</tr>
<tr>
<td>21</td>
<td>731568318545267113895784017</td>
<td>2765344545646532050242</td>
<td>55346966912930641004843</td>
<td>55346966912930641004843</td>
</tr>
</tbody>
</table>
REFERENCES

Pierpaolo Natalini
Dipartimento di Matematica e Fisica –
Università degli Studi Roma Tre
Largo San Leonardo Murialdo,
1 – 00146 - Roma (Italia)
E-mail: natalini@mat.uniroma3.it

Paolo Emilio Ricci
International Telematic University UniNettuno
Corso Vittorio Emanuele II,
39 – 00186 - Roma (Italia)
E-mail: paoloemilioricci@gmail.com