SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem Localization

Dušan Okanović¹, André van Hoorn², Zora Konjović¹, and Milan Vidaković¹

¹ Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad, Serbia
{oki, ftn_zora, minja}@uns.ac.rs
² Software Engineering Group, University of Kiel, Christian-Albrechts-Platz 4, 24098 Kiel, Germany
avh@informatik.uni-kiel.de

Abstract. Continuous monitoring of software systems under production workload provides valuable data about application runtime behavior and usage. An adaptive monitoring infrastructure allows controlling, for instance, the overhead as well as the granularity and quality of collected data at runtime. Focusing on application-level monitoring, this paper presents the DProf approach which allows changing the instrumentation of software operations in monitored distributed applications at runtime. It simulates the process human testers employ—monitoring only such parts of an application that cause problems. DProf uses performance objectives specified in service level agreements (SLAs), along with call tree information, to detect and localize problems in application performance. As a proof-of-concept, DProf was used for adaptive monitoring of a sample distributed application.

Keywords: continuous monitoring, adaptive monitoring, aspect-oriented programming, service level agreements.

1. Introduction

Modern enterprise applications constantly grow in size and complexity which makes them extremely demanding both from functional and non-functional aspects. Along with functional requirements, applications have to fulfill its non-functional requirements. Common non-functional requirements are availability, responsiveness, robustness, portability, etc. Non-functional requirements are defined in an agreement between software providers and consumers, called service level agreement (SLA) [1]. Before software is put into operation phase, in order to check software for bugs, it must be thoroughly tested. However, the testing phase is often shortened, usually because of pressure to put the application in operation as soon as possible. Furthermore, the
standard testing, e.g., using debuggers and profilers, hardly allows detecting all errors and unpredicted events that occur in production or during operation. Also, it is a common phenomenon that software performance and quality of service (QoS) degrade over time [2]—which calls for continuous monitoring of applications in order to determine whether QoS is kept on a satisfactory level. Continuous monitoring of software is a technique that provides a picture of dynamic software behavior under real exploitation circumstances. The data obtained through the monitoring process can, for instance, be used as a basis for architecture-based software optimization, visualization, and reconstruction [3].

An important issue of software monitoring is imposed performance overhead, since the monitoring system shares common resources with the monitored system. Therefore, the monitoring system has to perform using a minimal amount of resources. In a testing phase, software developers commonly use tools such as profilers and debuggers. These tools induce significant performance overhead, and therefore, they are not suitable for monitoring during the operation phase. Monitoring code can only be optimized up to a certain extent. In order to achieve an even higher reduction of monitoring overhead, it would be beneficial to automatically adapt monitoring to only monitor selected parts of the system.

The DProf system proposed in this paper has been developed for adaptive monitoring of distributed enterprise applications with a low overhead. In order to do that, the Kieker [3] framework, which yields low overhead, is used for collecting the monitoring data. Additional components support changing of monitoring parameters at application runtime. These additional components have been developed using Java Management Extensions (JMX) [4]. The system analyzes call trees (as described in the following paragraph) reconstructed from the gathered data and automatically creates a new monitoring configuration if needed.

A call tree represents calling relationships between software methods [5]. It contains the control-flow of method executions invoked by a client request. The first method is called the "root". For example, consider the simplified call tree in Fig. 1. This call tree represents a situation where a client invokes \texttt{methodA()} from \texttt{ClassA}. This method in turn, invokes two methods from \texttt{ClassB}: first \texttt{methodB1()} and then \texttt{methodB2()}. \texttt{SRVX} and \texttt{SRVY} are the names of servers on which the methods are being executed.

DProf configuration parameters specify which of the application's call trees are going to be monitored and, furthermore, they can specify nesting levels within the call tree that are to be monitored. DProf stores data in a central database, regardless of on how many computers the monitored application is executed. Using mechanism integrated into the Kieker framework, during data gathering, each method execution within a trace is uniquely identified and assigned a number which represents the order of execution (numbers on branches in Fig. 1). This allows call trees to be spread on different computers.
Fig. 1. An example call tree

DProf can be configured to work in different modes, e.g., for the following purposes: 1) locating software components causing deviations between obtained results and values required by service level agreements (SLAs), 2) detecting bottlenecks, or 3) collecting performance data for post-mortem analysis. The first two modes are usually used for problem detection and localization, while the third mode is used when software performance ought to be evaluated in general. DProf uses SLAs that are defined in an XML document, for which we propose an XML schema, called DProfSLA. The schema is compliant to existing SLA standards in the field.

The idea behind our approach is to reduce monitoring overhead by only monitoring parts of software suspected of containing problems or deviating from expected behavior. In the problem localization process, the system starts by monitoring methods that are at the root of call trees. If the deviation from expected results in one of the trees is detected, the DProf incrementally turns on monitoring in lower levels of that particular tree. This is repeated successively, until the method that is causing the problem is determined. DProf adapts without human intervention to find the cause of the problem.

This simulates the manual procedure typically employed for localizing the root cause of performance problems. Other systems perform monitor the whole software, regardless of the fact that other parts (other call trees) are working fine. Since DProf’s additional monitoring components are implemented using JMX technology, reconfiguration of the DProf monitoring parameters can still be performed manually by system administrators using any JMX console.

Software administrator intervention is only needed at the beginning of the monitoring process, when the monitoring goals are configured. It usually takes some time before clients start reporting a performance problem and even more until the service provider reacts, locates the problem, and finds a solution. Automation of localizing performance problems and faults reduces this time. DProf can detect even the slightest deviations proactively. This can provide enough time to react before clients start complaining, leaving software performance at desired levels.
In our earlier work we presented some parts of the monitoring subsystem of the DProf system [6, 7]. In this paper, we further extend those results with automatic adaptation of the monitoring process. We presented the DProfSLA XML schema in [8]. This paper presents an enhanced version of the schema, which contains support for the latest DProf features. A more detailed evaluation of the system is also presented.

The remainder of the paper is organized as follows. In Section 2 we present the DProf monitoring system, including its components, architecture and functions provided. Section 3 presents an evaluation of the DProf monitoring system. Section 4 discusses related work. It contains an example of the continuous and adaptive monitoring of a real application and presents a discussion of the obtained monitoring results. Finally, Section 5 draws concluding remarks and outlines directions for future work.

2. DProf System

The DProf system enables adaptive monitoring of distributed enterprise applications with a low overhead. It performs automatic analysis of obtained data based on call tree analysis and automatically reconfigures the monitoring instrumentation in order to reduce performance overhead or to provide more detailed data. The system configuration specifies which parts of the application are going to be monitored by selecting an application's call trees and levels within these call trees.

DProf is based on the Kieker framework and the JMX technology. It can be used for adaptive and reconfigurable continuous monitoring of Java EE applications, as presented in this paper. Use of Kieker grants low overhead. Separation of monitoring code from application code and source code instrumentation is performed by using aspect-oriented programming (AOP) [9]. We have developed additional components in order to allow an adaptive reconfiguration of monitoring parameters at runtime, i.e., while the application is running. JMX is used for controlling the monitoring process at runtime. Together with the DProfSLA schema, DProf can be used to monitor SLAs compliance and to localize the root cause of problems.

Details of our approach are presented in Section 2.1. In Section 2.2 we describe the DProfSLA XML schema. An overview of the underlying Kieker framework is given in Section 2.3. Section 2.4 presents architecture and some implementation details of the DProf system.

2.1. The DProf Approach

The activity diagram in Fig. 2 illustrates the DProf monitoring process. Before the application is started, an initial monitoring configuration is specified using include and exclude clauses in the aop.xml file, which configures the AOP-based instrumentation.
On application startup, with the initial monitoring parameters specified in the `aop.xml`, the DProf system is started simultaneously. It gathers monitoring data during application execution. Periodically, obtained performance data is being sent for analysis. The Analyzer reconstructs call trees based on monitoring data. These trees are analyzed by the AnalyzerThreads, each thread analyzing one tree in parallel to speed up analysis. A call tree represents methods that are invoked after one client call to the application. Each method invocation in the stack trace is represented with one node of the tree.

For the analysis we use the R [10] programming language and environment for statistical computing. We use the `extremevalues` [11] package to detect and remove outliers that we consider temporary effects caused by various external factors: class loading, starting of some resource-consuming process in the background while the monitored application is running, hardware glitches, etc. After outlier removal, the remaining values are processed using the specified statistical function and compared to the required value as defined in the SLA. Depending on the result of the comparison, new monitoring parameters are generated. If the number of outliers exceeds the value defined in DProfSLA, monitoring is repeated with old parameters.

If results deviate from values defined in the SLAs, the AnalyzerThread creates new monitoring parameters. The creation of new parameters depends on monitoring configurations defined in the SLA document. The system can be configured to monitor all or only selected parts of the application for the following purposes:

Fig. 2. Activity diagram of the DProf monitoring system

![Activity Diagram](image-url)
SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem Localization

1. Recording normal results – this is used to determine nominal values for SLAs. No changes in monitoring parameters are assumed in this case.

2. Finding which software component does not conform to the SLAs – in the SLAs we provide nominal values for nodes in call trees we want to be monitored.

3. Finding which software component consumes the largest amount of resources.

Using the DProf system, developers cannot only find which method causes problems, but also in which context the problems occur. Since the communication between the Analyzer and the components that are gathering the data is implemented using web services, this component can be used for receiving and analyzing monitoring records from applications developed for platforms other than Java/Java EE. In order to use this system with some other platform, such as .NET, adapters for the monitoring subsystem and the management interface are required.

SLA Compliance Monitoring and Problem Localization

In order to provide desired values for SLA, the application is monitored using the first configuration from the previous section (recording of normal results). Branches omitted from the SLAs are not monitored.

DProf starts with monitoring the top levels specified. If a problem is detected in one of the call trees, DProf triggers a reconfiguration to include monitoring of the next level of that tree. It will proceed down the tree as long as there is a discord with SLAs. The last node with values higher than those in SLA is declared the source of the problem.

Localization of Increased Resource Consumption

In the DProfSLA document we specify which call trees are to be monitored. For each call tree, the Analyzer configures the monitoring system to gather data only from the top level. In the next iteration, it finds the tree with the highest observed value (that is a root element of that tree). In the next iteration, the monitoring system is reconfigured to monitor only that call tree’s first two levels. This process is repeated further down the tree (if those levels exist). Through the process, DProf selects the branches with the highest observed values. The process ends as soon as the instrumentation reaches the bottom of the call-tree, or when observed values for the node on the higher level are greater than the values for its child nodes.

2.2. DProfSLA Schema

DProfSLA documents are used to define SLA parameters based on our DProfSLA XML schema. The relevant part of this schema with the root element and its sub elements of this schema is shown in Fig. 3. (In this paper we use the XMLSpy [12] notation for the XML schema representation.) The root element (DProfSLA) has three sub elements: Parties (parties in the
agreement), *CallTreeNode* (call-traces to be monitored) and *Timing* (time constraints of this agreement).

The *Parties* element represents the parties involved in the agreement. This element has two sub elements: service provider (*Provider*) and service consumer (*Consumer*). Both of these sub elements contain contact data regarding the service provider and service consumer respectively. Each sub element is represented using the *OrganizationType* complex type (not detailed here).

![Diagram](image)

Fig. 3. A part of the DProfSLA schema with the root element

Selection of Call Trees to be Monitored

Each *CallTreeNode* element represents performance information for a single node in the call tree to be monitored. It is of the *CallTreeNodeType* complex type shown in Fig. 4.

CallTreeNodeType elements have two mandatory attributes, a *name* and a *metric*. The *name* attribute is used to specify a part of the application to be monitored. The string representation of a call tree is used for this purpose. The metric attribute specifies the performance metric to be used, i.e., which aspect of application performance is going to be monitored (e.g., response time, memory consumption). Sub elements of this element are other sub call trees, e.g., sub traces that are invoked from the parent *CallTreeNode* element.

Furthermore, optional attributes for specifying expected performance values in terms of the designated metric can be configured. The *aggregateFunction* represents the function to be used in data analysis. The *nominalValue* represents the expected value (for the given aggregate function), while the *upperThreshold* and the *lowerThreshold* are maximal and minimal values of the designated metric, respectively. The *outlierPct* is used to define the allowed fraction of outliers (Section 2.1) in the set of obtained results.
Fig. 4. *CallTreeNodeType* complex type defined in the DProfSLA schema

Fig. 5. *Timing* sub element in the DProfSLA schema

Specification of Timing Constraints

The *Timing* element (Fig. 5) is used to specify time constraints for this agreement. The sub elements *StartTime* and *EndTime* define the period this document applies to. The *SamplingPeriod* element denotes the time period (in milliseconds) between two analyses runs, possibly resulting in a reconfiguration of monitoring parameters.

Example DProfSLA Document

An example DProfSLA document, which describes monitoring of the call tree from Fig. 1, is shown in Listing 1.
It represents an agreement between the parties Org1 and Org2. Response times are monitored to detect values exceeding the specified upperThreshold attribute. Every 10 minutes (600,000 ms), an analysis of the obtained results is performed.

In the first iteration the system only monitors monitorA(). If the obtained results show that the response times of methodA() exceed the upper threshold, monitoring of methodB1() and methodB2() is turned on. After the next 10 minutes, if results show that either methodB1() or methodB2() takes too long, it will have to be analyzed manually. Otherwise, the program code in methodA() is assumed to be the cause of the problem.

2.3. Kieker Framework

The Kieker framework is structured into the Kieker.Monitoring and the Kieker.Analysis components [3]. The Kieker.Monitoring component collects and stores monitoring data. The Kieker.Analysis component performs analysis and visualization of the monitoring data. The core components of the Kieker framework are depicted in Fig. 6, and described in the remainder of this section.

The Kieker.Monitoring component is executed on the same computer the monitored application executes on. This component collects application-level measurement data during the execution of the monitored applications. Monitoring Probes are software sensors that are inserted into the monitored application in order to gather various measurements. For example, Kieker includes probes to monitor control-flow and timing information of method executions. Probes are most commonly implemented using AOP technology; additional probes can be added to support different measurements, e.g., for adding support for new metrics. Monitoring Writers pass the collected data (as Monitoring Records), to a Monitoring Log or Stream. The framework is distributed with Monitoring Writers that can store Monitoring Records in, for example, file systems, databases, or Java Message Service (JMS) queues.
Additionally, users can implement and use their own writers, as we did for DProf. The Monitoring Controller component controls the work of this part of the framework.

The data in the Monitoring Log/Stream is analyzed by the Kieker.Analysis component. A Monitoring Reader reads records from the Monitoring Log/Stream and forwards them to a pipe-and-filter configuration of Analysis Filters. Filters may, for example, analyze and visualize gathered data. Control of all components in this part of the Kieker framework is performed by the Analysis Controller component.

Fig. 6. Component diagram of the Kieker monitoring framework

2.4. DProf System Architecture

We have implemented our approach using Java technology. The DProf system uses Kieker's infrastructure for data acquisition, extended by some additional components. The architecture of DProf system and its integration with Kieker are shown in Fig. 7.

The DProf components are divided into two groups: i) components that participate in recording monitoring data; and ii) components that analyze the obtained data and control the reconfiguration of monitoring parameters.

The DProfWriter is the new Monitoring Writer used. It sends Monitoring Records to the ResultBuffer component. The ResultBuffer periodically sends data to the RecordReceiver component, which, in turn, stores data into the relational database. The combination of ResultBuffer, RecordReceiver, and database plays the role of the Monitoring Log/Stream (Section 2.3).

Received data is periodically analyzed by the Analyzer component. The Analyzer is responsible for controlling the monitoring configuration. Configuration parameters are sent to the DProfManager component, which passes these parameters to the AspectController and to the ResultBuffer (to clear, if it contains result created with previous configuration parameters). The AspectController accesses the application's aop.xml file and performs changes, causing the application to restart. Upon the restart the new monitoring parameters are applied.
Kieker includes the monitoring record type OperationExecutionRecord that is used to store timing and trace information for method executions. We have developed the new Monitoring Record type DProfMonitoringRecord, which extends Kieker's original OperationExecutionRecord and additionally provides the otherData attribute. This attribute is used to store additional information, e.g. CPU utilization and memory consumption. When the record is created in the probe, the attribute is filled with comma-separated key-value pairs, depending on what the given monitoring aspect measures. Keys in this list correspond to metrics defined in the SLA document. This allows us to use this single Monitoring Record class for monitoring different metrics.

The RecordReceiver receives the data from the ResultBuffer. It is implemented as a web-service, and it stores records into a database table. By using the DProfManager and these additional components we can change monitoring parameters at runtime. This allows us to reduce the impact on the system, including monitoring overhead, by disabling monitoring in certain parts of the application, and to obtain more accurate results. Setting the new parameters can be performed either manually, by a person in charge or automatically by the Analyzer component. The Analyzer component, provided with a DProfSLA schema document, can check if service levels observed in gathered data deviate from those defined in the SLA and, according to the algorithm described in Section 2.1, to determine which part of the software causes this deviation.
Code instrumentation can be performed by hard-coding instrumentation routines into program code, but a more elegant way is AOP. AOP provides developers with separation of concerns: monitoring aspects are developed separately from application code.

Using AOP, we can choose to weave aspects with code upon compilation or to let the aspect runtime weave aspects into classes upon class loading. These processes are known as compile-time-weaving and load-time-weaving. When using DProf, we usually want to change monitoring parameters at runtime, so we use load-time-weaving. If we monitor, without having to change monitoring parameters at runtime, we can use compile-time-weaving. The advantage of using compile-time-weaving is only a faster application start; afterwards both compile- and load-time-weaved applications behave the same.

The DProf system uses the AspectJ AOP implementation for Java [14], for instrumentation. Initially, the AspectJ configuration file (aop.xml) specifies which parts of the application are to be included/excluded from monitoring, and which aspect to use as monitoring probes. During monitoring with the DProf system, additional clauses will be placed in this configuration file for the purpose of monitoring adaptation.

In the Java environment, time is usually measured using either System.currentTimeMillis() or System.nanoTime() calls [15]. Measuring of system-level metrics (such as memory consumption and CPU utilization), can be performed using platform MXBeans [4] or some third-party tools such asSIGAR [16].

3. Evaluation of the DProf System

The application of the DProf system will be demonstrated using the software configuration management (SCM) application described in our previous work [17]. SCM is a Java EE application responsible for tracking of applications and application versions in a company.

The goal is to monitor method response times and to localize the root cause of performance problems. Initially, DProf is configured to monitor only methods at the root of call trees. If an increase in method response times is detected, DProf will, potentially successively, reconfigure the instrumentation to monitor other levels, until it localizes the method that causes the problem.

This evaluation serves to demonstrate that monitoring overhead can be reduced by monitoring only root level if no performance problem is present. Also we perform a basic analysis of the overhead generated when using DProf, comparing it to the overhead generated by writers distributed with the Kieker framework.
3.1. Setting

The application is implemented using Enterprise JavaBeans (EJB) [18] technology. Entity EJBs are used for communication with databases, i.e., for object/relational (O/R) mapping [19]. They are accessed through stateless session EJBs (SLSB), modeled according to the façade design pattern [20]. SLSBs are annotated to work as JAX-WS [21] web services as well. We deployed SCM on a cluster of servers. The application client is a Java Swing [22] application.

Figure 8 shows a part of the application’s architecture.

![Diagram of the monitored SCM application's architecture]

Methods that are to be monitored are annotated with Kieker’s @OperationExecutionMonitoringProbe. As a monitoring probe we used a Kieker’s original OperationExecutionAspectAnnotation probe. It intercepts executions of annotated methods.

In this case study we will focus on the call tree shown in Fig. 9.
Fig. 9. The call tree monitored in this example

The testing was performed by repeatedly invoking the `OrganizationFacade.createOrganization()` method from 100 concurrent threads, with equally distributed think times between 0 and 10 seconds.

The analysis of the obtained data is performed every hour. Initially, only the `createOrganization(..)` method is monitored. After a deviation from values specified in the DProfSLA (last row in Table 1.) is detected, the methods invoked from this one are monitored additionally. If these methods do not violate the SLAs, the problem is assumed to be in the `createOrganization(..)` method. If the results for the `checkOrgName(..)` show deviations, monitoring is reconfigured to include the `Organization.getId()` and `Organization.getAddress()` methods, and to exclude the method `City.getId()`. The most likely cause of the problem is the method whose results do show deviation from expected response times, while methods invoked from it do not.

Within the `checkOrgName()` method, we purposely inserted a delay of 1 ms, to simulate a problem. In order to determine the impact of DProf on the monitored application, we measured response times on the client computer.

3.2. Analysis of Results

The obtained results were analyzed by the Analyzer after one hour, showing increased response of the `createOrganization(..)` method. To find the source of the problem, the Analyzer component changed monitoring parameters and added monitoring instrumentation to the methods in the next level of the call tree.
The analysis of the gathered data, one hour after the previous analysis, showed that an response time of the `checkOrgName(..)` method rose over designated values. The Analyzer then included the monitoring in the third level, i.e., the methods `Organization.getId()` and `Organization.getAddress()`. The obtained results are shown in Table 1.

Table 1. The average response times of monitored methods in milliseconds

<table>
<thead>
<tr>
<th>Levels monitored</th>
<th>Method</th>
<th>City.getld</th>
<th>Organization-Facade.checkName</th>
<th>Organization.getld</th>
<th>Organization.getAddress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.888</td>
<td>Not monitored</td>
<td>Not monitored</td>
<td>Not monitored</td>
<td>Not monitored</td>
</tr>
<tr>
<td>1 and 2</td>
<td>3.05</td>
<td>0.307</td>
<td>1.502</td>
<td>Not monitored</td>
<td>Not monitored</td>
</tr>
<tr>
<td>1, 2 and 3</td>
<td>3.339</td>
<td>Not monitored</td>
<td>2.290</td>
<td>0.429</td>
<td>0.71</td>
</tr>
<tr>
<td>Response times required by the SLA</td>
<td>2.250</td>
<td>0.750</td>
<td>1.300</td>
<td>0.750</td>
<td>0.850</td>
</tr>
</tbody>
</table>

`Organization.createOrganization(..)` has increased response time because of the `OrganizationFacade.checkOrgName(..)`. In turn, increased results of `OrganizationFacade.checkOrgName(..)` are not caused by the executions of the `Organization.getId(...)` and `Organization.getAddress(...)` methods.

Based on these results, it can be concluded that the `checkOrgName(...)` method requires further inspection in order to be made compliant in accordance to the SLA. This means that our system has been able to localize the method which causes the problem.

Overhead analysis

In order to estimate overhead we measured response times on the client side. A comparison of these times is shown in Fig. 10. The median response time of the monitored method, when monitoring is disabled, was 3.078 ms. By enabling monitoring of the call tree's first level, it increased to 3.535 ms. Monitoring of the second level generated additional 0.344 ms (it increased to 3.879 ms). Inclusion of monitoring of the third level led to average response time of 4.133 ms.

As expected, DProf yields an overhead, which rises if we increase the number of monitored methods. Also, a slight increase of the standard deviation in results from 0.954 ms to 1.194 ms shows that responsiveness becomes more unstable when the number of monitored call tree levels is increased. Hence, in case no problem is detected, the overhead would be minimal and responsiveness more stable, since only the first level would be monitored.
SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem Localization

Fig. 10. Comparison of response times of the `Organisation.createOrganisation(…)` method in different scenarios

Fig. 11. Overhead comparison for different writers
The obtained results are also in accordance to Kieker overhead analysis shown in [3]. Further comparison with Kieker's writers is shown in Fig. 11. We compared response times of the monitored application in different monitoring configurations: with no monitoring, when using DProf with and without sending data to the ResultBuffer, and when Kieker's original SyncFSWriter and SyncDBWriter are used.

The DProf system has lower overhead than Kieker's original SyncFSWriter and SyncDBWriter, which write records into file system and database, respectively. This is because in DProf, communication between the writer and the buffer is performed within one JVM.

Based on these results, it can be concluded that this system is suitable for continuous monitoring of all kinds Java applications. It provides valuable data on application execution with very small impact on application performance.

4. Related Work

For the research presented in this paper two fields are of particular importance: monitoring tools (which are presented in Section 4.1) and existing standards for SLA documents definition (Section 4.2).

4.1. Application Monitoring and Profiling Tools

Monitoring and profiling tools have been in use since the early 1970s. The UNIX operating system includes the prof tool [23] since 1979. It can record execution times for each program function. ATOM [24] was one of the first to use source code instrumentation and it appeared in the 1990s. Before application deployment, ATOM combines the instrumentation and the application code. The application executes normally, with additional output containing monitoring data.

A recent study by Snatzke [25] shows that, although service levels and performance of applications are of critical importance in practice, application level monitoring tools are rarely used. Java application monitoring tools are usually developed using either JVMI/JVMPi [26, 27] or aspect-oriented programming (AOP) [8] technology. JVMI and JVMPi APIs require knowledge of C/C++ in addition to Java, and also impose significant overhead [3]. Examples of JVMI/JVMPi-based profilers are JBoss Profiler [28] and JFluid [29]. JBoss Profiler is the profiler used with the JBoss application server [30]. JFluid is used within the NetBeans IDE [31]. COMPASS JEEM [32] can be used to monitor JEE applications, but every application layer needs a different set of probes. The Kieker framework [3], used in this work, is a Java-based framework for continuous application performance monitoring and dynamic software analysis. It includes aspects which implement monitoring probes.
A number of commercial application monitoring tools exist, but implementation details of these tools are scarce at best, if available at all. DynaTrace [33] uses its own PurePath technology which captures timing and context information for transactions across all application tiers. It has support for both Java and .NET environments. JXInsight [34] is designed for monitoring applications in JEE environments. It offers automatic performance analysis and problem detection. IBM's Tivoli Management Framework [35] is a system management platform. It is CORBA-based and allows remote management of software. IBM Tivoli Monitoring, which uses the Tivoli framework, is a set of tools which can be used for problem detection in various environments. Tivoli supports monitoring of JavaEE (WebSphere server), .NET, network (DNS, DHCP) and others. Both agent and agentless monitoring are supported. AppDynamics provides solutions for monitoring on different platforms, with low overhead [36]. It supports the automatic localization of problem root causes. Monitoring tools for other purposes exist as well, e.g., Nagios [37] for infrastructure monitoring, CA Unicenter [38] for infrastructure and application performance monitoring and management, or HP’s Insight [39] for monitoring and problem localization on some specific platforms.

Newman et al. present the MonALISA system [40] which constitutes a distributed monitoring service. It is implemented using Java and WSDL/SOAP technologies. MonALISA allows for monitoring of heterogeneous systems using autonomous agent based sub-systems. A graphical user interface visualizes complex gathered data. MonALISA includes a library of APIs that can be used to send data to MonALISA services. Using these APIs, other systems, such as DProf can be included in the monitoring process. AOP can be used for instrumentation of code. Separation of concerns allows for monitoring code to be separated from application code. There are several monitoring tools based on AOP.

The concept of manageable aspects—a combination of aspects and JMX MBeans—is proposed by Liu et al. [41]. It can be used as monitoring probes, for instrumentation and collecting runtime data during software execution. They can be accessed and controlled using any JMX console. Although this approach would present an excellent platform for adaptive monitoring, no implementation of this concept has been provided, yet.

The HotWave framework [42], which is still in development phase, allows run-time reweaving of aspects and the creation of adaptive monitoring scenarios. It allows for a development of adaptable monitoring solutions, as presented by the authors. Users can choose parts of the application to be monitored, and later reconfigure the system to monitor other parts, without having to restart the system. Unfortunately, no implementation of this framework is currently available.

Ehlers et al. present an approach for anomaly diagnosis [43] also based on call tree analysis and self-adaptive monitoring with Kieker. For each call tree node, representing the execution of a software method in a certain context, anomaly scores for response times are computed by comparing observed values with values predicted based on historic observations. OCL [44] is used
to specify rules for adapting the instrumentation based on the anomaly scores and the current instrumentation. In our earlier work [45], we presented an approach for automatic problem localization based on a correlation of anomaly scores with architectural calling dependencies. Kieker was also used in this approach. However, the monitoring was not adaptive.

Yu et al. [46] present the RaceTrack tool for race detection in .NET applications. This tool monitors program activity and looks for suspicious patterns in program execution. It has great accuracy because it monitors memory access at both object and field level. It starts by monitoring at object level, and only if unusual patterns are detected, it switches to field level. This way, performance overhead is reduced. The RaceTrack is implemented by modifying .NET’s virtual machine CLR (common language runtime). Such modification requires great understanding of how CLR works. If some changes are made in the future, it would probably require modifications on this tool. Also, the modified CLR has to be distributed with the application that is to be monitored, instead of, for example, just starting a tool within existing CLR.

Chen et al. [47] propose the Pinpoint system that locates components most likely to cause a fault. The approach is based on finding correlations between low-level faults and high-level problems. Data is gathered by collecting client traces using a modified Java EE platform. Unlike our approach, this approach focuses more on problem localization and less on performance problems.

A black box approach to problem localization is applied by some of the authors. This approach usually finds a component that is causing problems, but does not locate the problem within component. Aguilera et al. [48] use an approach that monitors message communication between components and tries to find causal paths between messages and performance problems. The PeerPressure tool presented by Wang et al. [49] compares “healthy” and “suspicious” machines using statistical methods to locate problems.

Very few papers provide actual numbers regarding overhead. Dimitriev [29] tested JFluid’s performance with SPECjvm98 tool [50]. Results show that overhead ranges from 1% for time consuming tasks like database access, to 5000% for compress tasks. JFluid allows users to reduce overhead by selecting the parts of an application to monitor. Govindraj et al. [51] discuss a possibility of using AOP for monitoring and they show the overhead ranges from 1-10%. For DynaTrace the monitoring overhead is reported to be less than 5%. However, these percentages are hardly comparable because they heavily depend on hardware and software used in the benchmarks, and especially they depend on the granularity of instrumentation and the usage profile.

4.2. SLA Standards

In order to automate service level management, SLAs must be defined in machine-readable format. As shown by Tebbani et al. [52], only few formal SLA specification languages exist. In practice, SLAs are often written in some
informal language. Tebbani et al. propose the GSLA (Generalized Service Level Agreement) language. A GSLA document constitutes a contract signed between two or more parties designed to create a measurable common understanding of each party’s role. The role is nothing but the set of rules which defines the minimal service level expectations and obligations the party has. GXLA is the XML schema which implements the GSLA information model. GXLA documents are composed of the following sections: schedule (temporal parameters of the contract), party (models involved parties), service package (an abstraction used to describe services) and role (as described). The use of GXLA supports an automation of the service management process.

WSLA [53] is a language to specify service levels for web services. XML-based WSLA documents define the involved parties, metrics, measuring techniques, responsibilities, and courses of action. The authors state that every SLA language, such as WSLA, should support contain 1) information regarding the agreeing parties and their roles, 2) SLA parameters and a measurement specification as well as 3) obligations for each party.

SLANG [54] is a language for specifying SLAs based on the Meta Object Facility [55]. It can use different languages for describing constraints, e.g., utilizing OCL [44] or HUTN [56].

The WS-Agreement specification language [57] has been approved by the Open Grid Forum. It defines a language for service providers to offer capabilities and resources, and clients to create an agreement with that provider.

Paschke et al. [58] propose a categorization scheme for SLA metrics with the goal to support the design and implementation of SLAs that can be monitored and enforced automatically. Standard elements of each SLA are categorized as: technical (service descriptions, service objects, metrics, and actions), organizational (roles, monitoring parameters, reporting, and change management), and legal (legal obligations, payment, additional rights, etc.). Paschke et al. categorized service metrics in accordance with standard IT objects: hardware, software, network, storage, and help desk. SLAs are grouped according to their intended purpose, scope of application, or versatility.

According to this categorization, DProfSLA documents (described in Section 2.2) are operation-level documents intended to be used in-house. By versatility categorization, they belong to standard agreements. We chose to design our own XML schema as an intermediate format, because we do not need all of the features of the described schemas. It is specifically designed to be used with the DProf system. Our schema provides a subset of the elements defined by GXLA or WSLA. A transformation of SLA documents between DProfSLA and the mentioned schemas could, for example, be performed using XSLT.
5. Conclusion

This paper presented the DProf approach for continuous and adaptive monitoring of distributed software systems and automatic evaluation of software performance against expected values defined in service level agreements (SLAs). The DProf system gathers data from application execution, compares these measurements with the SLAs and, based on call tree analysis, aims to localize application components causing possible SLA violations. Expected values are defined in a document based on the described DProfSLA XML schema. The schema is designed with existing SLA schemas, such as GXLA and WSLA, and their categorizations of contained information in mind. DProfSLA’s intended use is for standard intra-organizational agreements, but it may be used for inter-organizational agreements, too. The schema supports various metrics and additional metrics can be added as needed.

The DProf monitoring system is mainly designed for continuous monitoring of JEE applications, but with minor modifications it can be used to monitor applications developed for other platforms. We described the architecture of our DProf prototype, whose implementation is based on the Kieker framework with additional JMX-based components.

As a proof-of-concept, the DProf system was used for adaptive monitoring of a sample Java EE application. The analysis of obtained results shows low monitoring overhead, and reduced overhead by enabling monitoring on-demand.

Our system is not able to differentiate between call trees with the same root element, that can have different lower nodes. In this case the system could report incorrect results. In order to confront this issue, developers should choose to monitor only one of these trees, and exclude the other using an appropriate aop.xml configuration file.

Our future work regarding DProf will focus on the implementation of the DProf Analyzer as a Kieker plugin and an integration of the DProf component into the Kieker distribution. We also plan to further extend the system by additional monitoring probes for different and more complex measures. Furthermore, we will work on more advanced algorithms for the Analyzer component, enabling it to change monitoring parameters on different computers in distributed environments.

References

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem Localization

20. Gamma, E., Helm, R., Johnson, R., Vlissides, J. M: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, Boston, USA. (1994)

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

Dušan Okanović is a teaching assistant and PhD student at the Faculty of Technical Sciences, Novi Sad, Serbia. He received his Bachelor degree (2002) and Masters degree (2006), both in Computer Science from the University of Novi Sad, Faculty of Technical Sciences. His research interests include application management, performance management and distributed applications development. Since 2003 he has been with Faculty of Technical Sciences where he was teaching where he participated in several science projects and published 25 scientific papers. His research interests are web and internet programming, distributed applications, application management, and performance management. He can be contacted at: oki@uns.ac.rs.

André van Hoorn is a research assistant and PhD student with the Software Engineering Group at the University of Kiel, Germany. He received his Diploma (Master equivalent) degree in Computer Science from the University of Oldenburg, Germany (2007). From 2008 to 2010, André was member of the Graduate School on Trustworthy Software Systems (TrustSoft) at the University of Oldenburg, where he was holding a PhD scholarship from the German Research Foundation (DFG). Since 2011, he works in the collaborative research project DynaMod on dynamic analysis for model-driven software modernization. His research interests include architecture-based and model-driven software performance engineering, self-adaptation, and reengineering. He published more than 20 scientific papers. André can be contacted at: avh@informatik.uni-kiel.de.

Zora Konjović has been holding the full professor position at the Faculty of Technical Sciences, Novi Sad, Serbia since 2003. Mrs. Konjović received her Bachelor degree in Mathematics from the University of Novi Sad, Faculty Science in 1973, Master degree in Robotics from the University of Novi Sad, Faculty of Technical Sciences in 1985, and Ph. D. degree in Robotics from the University of Novi Sad, Faculty of Technical Sciences in 1992. From 1973 till 1980 she was with the Faculty of Science in Novi Sad, and since 1980 she has been with the Faculty of Technical Sciences, University of Novi Sad. Mrs. Konjović participated in 5 scientific and more than 30 professional projects; in 5 she was the project leader. She published more than 150 scientific and professional papers. She is the corresponding author and can be contacted at: ftn_zora@uns.ac.rs.
SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem Localization

Milan Vidakovic received the BSc, MSc and PhD degrees in electrical engineering from the Faculty of Technical Sciences, University of Novi Sad, in 1995, 1998 and 2003 respectively. He is a professor at Computing and Control Department, University of Novi Sad. He participated in several science projects and published more than 60 scientific and professional papers. His research interest covers web and internet programming, distributed computing, software agents, embedded systems, and language internationalization and localization. He can be contacted at: minja@uns.ac.rs.

Received: September 26, 2011; Accepted: June 14, 2012