Studies on the hydrothermal synthesis of Cd$_x$Zn$_{1-x}$S compounds

Paula Svera1,2, Daniel Niznansky3, Mariana Nela Stefanut1, Daniel Ursu1, Paula Sfirloaga1, Anamaria Dabici1, Bogdan-Ovidiu Taranu1, Ana-Maria Putz4,*, Viorel-Aurel Serban2

1National Institute for Research and Development in Electrochemistry and Condensed Matter, Dr. A.P. Podeanu no. 144, 300254 Timisoara, Romania
2Politehnica University of Timisoara, Department of Materials Manufacturing and Engineering, B-dul Mihai Viteazul no. 1, 300222 Timisoara, Romania
3Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
4Institute of Chemistry Timisoara of Romanian Academy, Bvd. Mihai Viteazul no. 24, 300223 Timisoara, Romania

Received 24 February 2018; Received in revised form 3 June 2018; Received in revised form 7 July 2018; Accepted 23 August 2018

Abstract

In this study series of Cd$_x$Zn$_{1-x}$S solid solutions with different amounts of Cd and Zn were synthesized by the hydrothermal treatment of aqueous solutions containing CdCl$_2$, Na$_2$S·9H$_2$O and ZnSO$_4$·7H$_2$O. The aim was to examine the influence of Zn concentration and processing conditions (hydrothermal temperature and duration) on the structure of the obtained powders and their photocatalytic activity (in water splitting process). The obtained photocatalysts (with and without Pd co-catalyst) were analysed by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) method and gas chromatography (GC). The XRD results confirmed the crystallinity of the compounds and transition from hexagonal to cubic phase with increasing Zn content. Complete transformation from hexagonal to cubic phase did not take place, and both phases were present in almost all samples. BET analysis showed the importance of the pore distribution and pore size, especially in the case of photocatalysts with different duration treatment. GC measurements of the photocatalysts without and with Pd co-catalyst confirmed the production of hydrogen for all tested compounds. The best photocatalytic performance was achieved by the sample Zn$_{50}$Cd$_{230}$/72-Pd prepared at 230 °C, for 72 hours, with 50% Zn and in the presence of Pd co-catalyst. The synthesis implied neither stabilizer nor organic compound.

Keywords: water splitting, Cd$_x$Zn$_{1-x}$S, semiconductors, photocatalytic activity, hydrothermal

I. Introduction

Hydrogen is currently a promising candidate for energy consumption regarding the zero emission pollution in combination with unlimited solar energy [1,2]. Still there are challenges regarding undesirable electron transfer loss, over-potential and instability of the photocatalytic materials [3]. Recurring disadvantages lead to different approaches with the aim to accelerate the charge separation and migration in the photocatalytic process, resulting in multiple studies on different types of materials [1,3,4–8].

Taking into account the efficiency, cadmium combined with zinc is widely used in water splitting experiments [9–11] in form of core shell [6], multiple systems [4,5] or doped with co-catalyst [2,7,8,12]. Other important features of this type of material represent the possibility to control the shape and size of the final photocatalysts by preparation methods like sol-gel, solvothermal, hydrothermal, chemical precipitation, micro-emulsion, inverse micelles and other methods [13,14]. Mixture between cadmium sulphide and zinc sulphide reflects
similarities in crystalline structure [5,6]. Thus, combined with proper differences like band gap, results in wider band gap for Zn compared to Cd, in which Zn plays the role of the passivation surface material [6]. Also, it was observed from other studies that \(d^0 \) and \(d^{10} \) semiconductors are suitable for water splitting. It is yet another good characteristic of the selected materials in this study [2,8]. ZnS is a typical semiconductor with fully filled 3d shell (\(d^{10} \) configuration); it is colourless, since no d-d electronic transitions are possible; CdS has also fully filled 4d shell (\(d^{10} \) electronic configuration), but in this case the colour cannot be explained on the basis of crystal field theory and its resulting yellow colour is due to its semiconductor behaviour [8,15]. It was reported that electron transition energy for cadmium sulphide is 2.4 eV, which corresponds to the wavelength of 517 nm, absorbing all photons with energies of 2.4 eV or higher. This includes all the blue-violet region of the spectrum, as well as green, resulting in yellow coloured material [8,10]. In order to shift the absorption edge of ZnS (3.6 eV) into the visible range, studies regarding Cd\(_{1-x}\)Zn\(_x\)S compounds formed by substitution of Zn\(^{2+}\) with Cd\(^{2+}\), or by incorporation of ZnS into the structure of CdS began to have more importance recently [10,11,14]. Besides the compound concentration variations, other properties such as the crystal structure, size, shape, specific area and surface defect states play important role [11,16].

In the current study, series of Cd\(_{1-x}\)Zn\(_x\)S solid solutions with different amounts of Cd and Zn were hydrothermally prepared at different temperatures and duration and tested under visible light in Na\(_2\)S/Na\(_2\)SO\(_3\) solution with and without Pd co-catalyst. ZnSO\(_4\)·7H\(_2\)O was used as zinc precursor instead of nitrates and no stabilizer neither organic compound was added. To the best of our knowledge, Zn precursor used in this synthesis was not reported in previous papers concerning photocatalytic water splitting of Cd\(_{1-x}\)Zn\(_x\)S compounds.

II. Experimental procedure

2.1. Materials

All used materials (CdCl\(_2\)·2.5H\(_2\)O, Na\(_2\)S·9H\(_2\)O, ZnSO\(_4\)·7H\(_2\)O, Na\(_2\)SO\(_3\), PdCl\(_2\)) were of analytical grade and purchased from Sigma-Aldrich. Deionized water was used during all the experiments. Standards like nitric acid 67% (Merek, free of heavy metals), Zink-Standardsolution (1.19806.0100, CertiPUR\(^\text{®}\), Merck) and Cadmium-Standardsolution (1.19777.0100, CertiPUR\(^\text{®}\), Merck) were used for atomic absorption spectroscopy analyses.

2.2. Cd\(_{1-x}\)Zn\(_x\)S synthesis

Different concentrations of CdCl\(_2\)·2.5H\(_2\)O were mixed with Na\(_2\)S·9H\(_2\)O and 20 ml of water. The mixture was then left under sonication for 5 minutes. After the sonication ZnSO\(_4\)·7H\(_2\)O was added to the mixture. After the second sonication, the mixture was transferred into a teflon-lined stainless steel autoclave and treated hydrothermally at different temperatures and times, as shown in the Table 1. After the hydrothermal treatment, autoclaves were cooled down to room temperature and the obtained mixture was washed and filtered several times with water and dried at 80°C for 8 hours. Pd source (1 M PdCl\(_2\) solution) was added at room temperature after the synthesis.

2.3. Characterization

The phase purity was studied using powder X-ray diffraction (XRD) on Panalytical X'Pert PRO MPD diffractometer. Concentration ratio of Cd/Zn in compounds was determined by atomic absorption spectrophotometry (AAS) on novAA 400G Analytik Jena apparatus. Optical characterization was performed by Perkin Elmer, Lambda 950 UV-VIS Spectrophotometer. The morphology of the materials was investigated by scanning electron microscopy (SEM) using FEIInspect S and transmission electron microscopy (TEM) using FEI Titan G2 80-200 transmission electron microscope (operating at 200 keV). The specific surface area and pore size distribution data were determined by low temperature nitrogen adsorption using QUANTACHROME Nova 1200 apparatus and Brunauer-Emmette-Teller (BET) and Barrette Joyner-Halenda (BJH) methods, respectively. All samples were initially degassed in vacuum at room temperature for 12 h. H\(_2\) detection was performed by gas-chromatography (GC) using Chromatron Gas-Chromatograph GCHF 18.3.

2.4. Photocatalytic process and reactor

All photocatalysts were tested in a Pyrex glass reactor connected to the gas-chromatograph by a loop and the measurements were taken on every hour. The Cd\(_{1-x}\)Zn\(_x\)S photocatalyst (0.05 g) was dispersed in a 100 ml aqueous solution containing 0.4 M Na\(_2\)S·9H\(_2\)O and 0.2 M Na\(_2\)SO\(_3\), which served as sacrificial agents. By combination of SO\(_3^{2-}\) and S\(_2\), utilized as sacrificial agent, specific reactions occurred [1,11]:

\[
\text{Cd}_{1-x}\text{Zn}_{x}\text{S + hν} \rightarrow h^+ + e^- \\
e^- + 2\text{H}_2\text{O} \rightarrow \text{H}_2 + 2\text{OH}^- \\
\text{SO}_3^{2-} + 2\text{OH}^- + h^+ \rightarrow \text{SO}_4^{2-} + 2\text{H}^+ \\
2\text{S}_2^{2-} + 2\text{H}^+ \rightarrow \text{S}_2 \text{O}_3^{2-} \\
\text{S}_2^{2-} + \text{SO}_3^{2-} \rightarrow \text{S}_2\text{O}_3^{2-} + \text{S}^{2-} \\
\text{SO}_3^{2-} + \text{S}_2^{2-} + 2\text{H}^+ \rightarrow \text{S}_2\text{O}_3^{2-}
\]

The first measurement (zero measurement) was taken after several system purging with vacuum and argon. The second measurement was taken after one hour of reactor illumination with 300 W xenon lamp. Measurements lasted 6 hours and during entire experiment the photocatalysts inside the reactor were stirred and kept at constant temperature. In case of Zn\(_{50}\)·230/72-Pd, Zn\(_{50}\)·230/12-Pd and Zn\(_{50}\)·150/12-Pd
Table 1. Synthesis parameters of obtained photocatalysts

<table>
<thead>
<tr>
<th>Sample</th>
<th>CdCl$_2$·2.5H$_2$O [mmol]</th>
<th>ZnSO$_4$·7H$_2$O [mmol]</th>
<th>Na$_2$S·9H$_2$O [mmol]</th>
<th>T_{HT} [°C]</th>
<th>τ_{HT} [h]</th>
<th>PdCl$_2$ co-catalyst [mmol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn$_{20}$,150/12</td>
<td>1.9</td>
<td>0.1</td>
<td>2.30</td>
<td>150</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{40}$,150/12</td>
<td>1.6</td>
<td>0.4</td>
<td>2.29</td>
<td>150</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{60}$,150/12</td>
<td>1.2</td>
<td>0.8</td>
<td>2.29</td>
<td>150</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{80}$,150/12</td>
<td>1.0</td>
<td>1.2</td>
<td>2.30</td>
<td>150</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{100}$,150/12</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>100</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{20}$,200/12</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>200</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{40}$,200/12</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>230</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{60}$,200/12</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>230</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{80}$,200/12</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>230</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{100}$,200/12</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>230</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{50}$,230/6</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>230</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{50}$,230/24</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>230</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{50}$,230/48</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>230</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{50}$,230/72</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>230</td>
<td>72</td>
<td>-</td>
</tr>
<tr>
<td>Zn$_{50}$,230/6-Pd</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>150</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Zn$_{50}$,230/24-Pd</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>230</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Zn$_{50}$,230/72-Pd</td>
<td>1</td>
<td>1</td>
<td>2.30</td>
<td>230</td>
<td>72</td>
<td>1</td>
</tr>
</tbody>
</table>

photocatalysts, 1 ml of 1 M PdCl$_2$ solution was added to photocatalyst/Na$_2$S·9H$_2$O/Na$_2$SO$_3$ mixture at room temperature before the system was cleaned with vacuum/argon and before the first GC measurement.

III. Results and discussion

3.1. XRD analyses

XRD patterns show a size-broadening effect which demonstrates the finite size of the synthesized Cd$_x$Zn$_{1-x}$S nanocrystals. During the analysis, three crystal phases were identified corresponding to the standard XRD patterns of the cubic ZnS (JCPDS No. 00-005-0566), cubic CdS (JCPDS No. 00-002-0454) and hexagonal CdS (JCPDS No. 00-001-0780) represented at the bottom of Figs. 1, 2 and 3 [14]. The XRD peaks of CdS/Cd$_x$Zn$_{1-x}$S clusters gradually shift to larger angles and the phase transformation from hexagonal to cubic

![Figure 1. XRD measurements of photocatalysts with different Zn concentration](image1)

![Figure 2. XRD measurements of photocatalysts at different thermal treatment temperature](image2)

![Figure 3. XRD measurements of photocatalysts at different duration of thermal treatment](image3)
can be observed with increasing Zn content (Fig. 1). Complete transformation from hexagonal to cubic phase did not take place, and both phases were present in almost all samples. The predominant cubic phase ends at sample with 60% Zn (Zn\textsubscript{60}\textsubscript{150}/12). The continuous peak shift of Cd\textsubscript{50}Cd\textsubscript{200}/12 shows the most dominant cubic sphalerite phase along with hexagonal wurtzite phase implying that both phases co-exist in all the samples treated at different thermal conditions.

When comparing samples with different duration of hydrothermal treatment (Fig. 3), small variations were observed in the case of 28.30° XRD peak, which corresponds to specific (101) plane.

3.2. Atomic absorption spectrometry

Preparation for the analysis implied different quantities of the photocatalyst (0.02–0.04 g weighted with 0.00001 g precision), which were digested with 5.5 ml HNO\textsubscript{3} using a MWS-2 Berghof oven (1000 W). Calibration curves were made for Zn and Cd (presented on request). The obtained results (Table 2) show different values from the initially introduced concentrations of the precursors before the hydrothermal treatment (Table 1), which could be attributed to the nucleation effect during the exposure to higher temperature.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cd [mmol]</th>
<th>Zn [mmol]</th>
<th>Cd/Zn ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn\textsubscript{60}150/12</td>
<td>0.206</td>
<td>0.181</td>
<td>1.14</td>
</tr>
<tr>
<td>Zn\textsubscript{60}230/12</td>
<td>0.126</td>
<td>0.150</td>
<td>0.84</td>
</tr>
</tbody>
</table>

3.3. UV-VIS spectroscopy

The absorbance spectra of Cd\textsubscript{x}Zn\textsubscript{1-x}S materials with different compositions and prepared at different conditions (hydrothermal temperature and duration), were presented in Figs. 4, 5 and 6. All absorption edges of the analysed materials are placed in the visible region with the tendency to shift closer to the infrared region due to the increase of Cd content (Fig. 4), as confirmed by related study [9]. The CdS and ZnS absorption wavelengths are clearly seen at 510 nm and 340 nm, respectively. In addition, higher absorption and movement of the characteristic band closer to 510 nm are obvious for the compound containing more Cd [17]. In the case of the materials synthesized under different thermal treatments, the shift in the UV direction was observed with the increase of temperature (Fig. 5) and decrease of duration of hydrothermal treatment (Fig. 6).

From UV-VIS absorbance data, using Tauc plot [18],
the band gap values were obtained. The band gap values could be used to predict the hydrogen production capacity of the materials and improve the prepared photocatalysts. The determined energy band gaps of the photocatalysts (Figs. 7, 8 and 9) varied from 2.20 to 2.53 eV. The increase is attributed to the Zn content which is confirmed by previous analyses and only the sample Zn_{50}/150/12 presented slight deviation from the encountered tendency of the photocatalysts.

3.4. N\(_2\) adsorption desorption isotherms

Low-temperature N\(_2\) adsorption of the analysed samples was performed at 77 K and the specific surface area and pore size distribution were determined using BET and BJH methods (Table 3). The highest specific surface area among the compounds in the first category with different Zn concentrations (Zn_{150}/12, Zn_{150}/12, Zn_{2150}/12, Zn_{50}/150/12, Zn_{45}/150/12, Zn_{50}/150/12 and Zn_{50}/150/12) was registered in the case of Zn_{50}/150/12 (76.0 m\(^2\)/g). The photocatalyst Zn_{20}/150/12 has the lowest specific surface area (27.5 m\(^2\)/g) and total pore volume. The pore size distribution values (d\(_{BJHads}\) and d\(_{BJHdes}\)) indicate disordered porosity for all compounds, except for Zn_{50}/150/12 with the lowest value difference between d\(_{BJHads}\) and d\(_{BJHdes}\), and simultaneously the lowest porosity disorder. According to the pore width values (d\(_{DFT}\)), only mesopores are present in the samples. Fractal dimension values (d\(_{SFIH}\)) demonstrate almost similar rugosity among all the samples.

The analyses of the samples from the second category, which includes different hydrothermal temperature (Zn_{50}/100/12, Zn_{50}/150/12, Zn_{50}/200/12, Zn_{50}/230/12) highlight that Zn_{50}/230/12 has the highest specific surface area of 74.7 m\(^2\)/g and the lowest one the sample Zn_{50}/100/12 (23.6 m\(^2\)/g). Pore size distribution and rugosity were not influenced by temperature of the hydrothermal treatment, and stayed almost unchanged in comparison to the previous category. It should be observed that the temperature significantly influences the total pore volume and specific surface area. The sample Zn_{50}/230/12 is characterized by the ordered porosity which is not the case for the rest of the samples.

When comparing samples with different duration of the hydrothermal treatment (the third category: Zn_{50}/230/6, Zn_{50}/230/24, Zn_{50}/230/48, Zn_{50}/230/72), it can be observed that, with the increased duration, the specific surface area and total pore volume decrease while the pore size calculated by DFT method and rugosity slightly increase. Zn_{50}/230/48 and Zn_{50}/230/72 exhibit ordered porosity with Zn_{50}/230/72 having more ordered pores in comparison to Zn_{50}/230/48.

The above observations correspond to the literature, explaining the close connection between the increase of surface area and increment of the active sites number along with the surface defects [11]. This phenomenon is defined by the presence of electron-hole pairs that are separated and transferred on the catalyst surface, taking part in water splitting reaction. It was concluded that the
higher specific area, the more active sites are present, resulting in successful water splitting reaction [11,12]. Because the presence of the defects cannot be demonstrated by BET, they could be explained by the presence of both cubic and hexagonal phases in XRD. The importance of the surface defects is reflected on the ability to capture photogenerated electrons or holes, and as a consequence, an intensified migration of electron/hole to the surface of the catalyst, leading to a successful photocatalytic reaction. However, the porosity disorder was not evidenced in other studies, revealing an important factor that could affect the water splitting process and simultaneously the H₂ production. High specific surface areas were accompanied by the ordered porosity in two categories (the samples with different Zn concentrations and different temperatures of the hydrothermal treatment). A deviation is observed in the case of the third category (compared by the hydrothermal duration) resulting in lower surface area, but high ordered porosity with the increase of thermal duration.

3.5. SEM and TEM analyses

In Fig. 10 the morphological analyses of the investigated samples are presented. The photocatalyst particles are distributed randomly and form cluster agglomerates. SEM images (Fig. 10) of the prepared photocatalysts

![Figure 10. SEM morphology of photocatalysts with different Zn contents: Zn₅₀ 150/12 (a) and Zn₁₀ 150/12 (b), and different temperatures of the hydrothermal treatment: Zn₅₀ 230/12 (c) and Zn₅₀ 100/12 (d)](image-url)
suggest decrease in the size of the agglomerates when exposed to higher temperatures compared to the samples with different Zn concentrations. The morphology of all analysed materials is roughly spherical.

TEM images (Fig. 11) confirm the presence of quasi-spherically shaped grains with different sizes. TEM images show nanocrystallites with the average size of ~20 and ~30 nm in case of the samples Zn\(_{50}\)230/6 and Zn\(_{50}\)230/72, respectively. Aggregation of these crystallites results in apparently bigger particles with larger diameters which could be seen in SEM images (Fig. 10) [19]. Other feature is the strip like structure that appears on the surface of the nanoparticles due to the hydrothermal treatment resulting in stacking faults, characteristic for close-packed structures, or nano-twins [20]. It was also observed that the particles are merging which could confirm the nucleation that occurs in AAS results.

3.6. Gas chromatography measurements

All three categories of the photocatalysts were tested by GC highlighting the parameters that influence the photocatalytic performance. According to the obtained results, there were no other peaks except the specific peak for \(\text{H}_2\). All measurements lasted for 6 hours, starting with the measurement zero in the absence of the light and with previous vacuum and argon system cleaning. \(\text{H}_2\) value (in micromoles) was obtained by multiplication of the peak area and calculated correction factor. Considering the volatility of \(\text{H}_2\), the gas chromatography measurements were performed directly by connecting the reactor and apparatus. In consequence there is an empty space which was taken into account, in order to obtain correct \(\text{H}_2\) value. As mentioned, final \(\text{H}_2\) value (\(\text{H}_2_{\text{final}}\)) was calculated by multiplication of loop volume (\(V_l\)) and empty space between reactor and loop total volume (\(V_t\)) accordingly to the formula (1):

\[
\text{H}_2_{\text{final}} = \text{H}_2 \cdot \frac{V_l}{V_t}
\]

From the obtained GC measurements (Table 4), Zn\(_{50}\)150/12 exhibited the highest \(\text{H}_2\) production rate among photocatalysts with different Zn composition.

The Zn\(_{50}\)150/12 was improved by increasing the synthesis temperature, therefore Zn\(_{50}\)230/12 exhibited higher results with \(\text{H}_2\) production rate of \(0.54 \text{mmol g}^{-1} \text{h}^{-1}\). Co-catalysts have positive effect on the water splitting process, which have been discussed in many studies and Pt being the most used one. The present study showed good results by introducing Pd in the compound reflecting positive outcome and also being the cheapest noble metal [12]. Consequently, Zn\(_{50}\)230/12-Pd doped with Pd obtained \(\text{H}_2\) production rate of \(0.56 \text{mmol g}^{-1} \text{h}^{-1}\), which was slightly above Zn\(_{50}\)230/12 sample. In order to improve the existing material, Zn\(_{50}\)230/12 was left longer under the hydrothermal treatment, resulting Zn\(_{50}\)230/72 as the most favourable photocatalyst in this category with \(0.70 \text{mmol g}^{-1} \text{h}^{-1}\) \(\text{H}_2\) production rate. Zn\(_{50}\)230/72-Pd was expected to surpass the Zn\(_{50}\)230/12-Pd. However, better results were obtained by Zn\(_{50}\)230/12-Pd in the presence of Pd with \(2.72 \text{mmol g}^{-1} \text{h}^{-1}\). This effect could be linked with the surface and textural characteristics that showed lower total pore volume in the case of Zn\(_{50}\)230/72 when compared to Zn\(_{50}\)230/12. The most important factor is how-

Figure 11. TEM morphology for Zn\(_{50}\)230/72 (a) and Zn\(_{50}\)230/6 (b) from photocatalysts with different treatment duration

Table 4. \(\text{H}_2\) values obtained from GC measurements

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\text{H}_2) [mmol g(^{-1}) h(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(_{50})150/12</td>
<td>0.028</td>
</tr>
<tr>
<td>Zn(_{50})150/12</td>
<td>0.013</td>
</tr>
<tr>
<td>Zn(_{50})150/12</td>
<td>0.024</td>
</tr>
<tr>
<td>Zn(_{50})150/12</td>
<td>0.128</td>
</tr>
<tr>
<td>Zn(_{50})150/12</td>
<td>0.125</td>
</tr>
<tr>
<td>Zn(_{50})100/12</td>
<td>0.032</td>
</tr>
<tr>
<td>Zn(_{50})200/12</td>
<td>0.412</td>
</tr>
<tr>
<td>Zn(_{50})230/12</td>
<td>0.543</td>
</tr>
<tr>
<td>Zn(_{50})230/6</td>
<td>0.275</td>
</tr>
<tr>
<td>Zn(_{50})230/24</td>
<td>0.320</td>
</tr>
<tr>
<td>Zn(_{50})230/48</td>
<td>0.634</td>
</tr>
<tr>
<td>Zn(_{50})230/72</td>
<td>0.702</td>
</tr>
<tr>
<td>Zn(_{50})150/12-Pd</td>
<td>0.569</td>
</tr>
<tr>
<td>Zn(_{50})230/12-Pd</td>
<td>2.726</td>
</tr>
<tr>
<td>Zn(_{50})230/72-Pd</td>
<td>1.987</td>
</tr>
</tbody>
</table>
ever the difference between specific surface area, which is much higher in the case of ZnS, 230/12.

The influence of the specific surface area over the H₂ production rate was observed also in the case of Cd₉₀₂Zn₈₈S microspheres reported by Wang et al. [11]. Even higher H₂ production rate was reached when 1 wt.% of Pt was loaded on CdₓZn₁₋ₓS, which in our case was replaced with Pd [11]. Resulting values were merely influenced by the specific surface area which is responsible for surface defects and therefore higher number of reaction sites [11,21].

IV. Conclusions

In this study series of CdₓZn₁₋ₓS solid solutions with different amounts of Cd and Zn were synthesized by the hydrothermal treatment of aqeous solutions containing CdCl₂, Na₂S·9H₂O, and ZnSO₄·7H₂O. Strong influence of synthesis conditions (Zn concentration, hydrothermal temperature and duration) on specific surface area and pore structure was observed, while there are only slight changes in particle size and morphology. All hydrothermally synthesised materials performed photocatalytic activity confirmed by gas chromatography measurements and the presence of only one gas, H₂. Among the obtained materials, ZnS 230/72-Pd showed the best value with 2.72 mmol g⁻¹ h⁻¹. The best results in the absence of Pd were registered in the sample ZnS 230/72. It was also shown that specific surface area and total pore volume had the most significant influence on photocatalytic activity, while the influence of Pd co-catalyst is not so important.

Acknowledgement: Grateful acknowledgements to IOSUD-UPT (Politehnica University Timisoara) for the assistance and offered possibility to conceive GC measurements and adapt the whole system to the desired requirements.

References

